
SFWR 4C03: Computer Networks and Computer Security January 26-29 2004

Lecturer: Kartik Krishnan Lectures 10-12

Internet Control Message Protocol (ICMP):

The operation of the Internet is closely monitored by the routers. Although the
IP layer provides a best-effort unreliable delivery system, each router provides an
Internet Control Message Protocol (ICMP) error message to the original sender
whose IP address is encapsulated in the IP decagram. The ICMP message allows
the router to send error or control messages to the sending host. These ICMP
messages travel across the internet in the data portion of IP decagram, but are,
however, considered a part of the IP protocol suite. An exception is made to the
error handling procedure if an IP datagram carrying an ICMP message causes
an error. This is established to avoid the problem of having error messages
about error messages.

Technically, ICMP is an error reporting mechanism. Whenever a datagram
causes an error, ICMP can only report the error condition back to the original
source of the datagram; the source must accordingly relate the error to an indi-
vidual application program or take appropriate action to correct the problem.
For example, suppose a datagram is supposed to follow a path through a se-
quence of routers R1, . . . , Rk−1, Rk. If Rk−1 has incorrect routing information
and mistakenly routes the datagram to router RE , then RE uses an ICMP to
report the problem to router R1 and not Rk−1. This is because the IP datagram
only contains the source IP address of router R1. It is now the responsibility of
router R1 to remedy the situation.

The ICMP message format is given in Section 9.5 of Comer. The important
ICMP message types are listed in Table 1. A few comments about when these
message types originate are now in order:

1. Destination unreachable: This message is used when the router cannot
locate the destination since it was down, or the destination address is
invalid. It can also occur if an IP packet with the don’t fragment bit set
(see Lecture 3) cannot be delivered since a network with a small MTU
stands in the way.

2. Time exceeded: This message is sent when an IP datagram with the
TTL field equal to zero is obtained at a router. This event is a symptom
that packets are looping (due the mistakes in the routing tables), that
there is enormous congestion, or that the TTL values are being set too
low.

10-12-1

Message Type Description
Destination unreachable Packet could not be delivered

Time exceeded TTL field hit 0
Parameter Problem Invalid header field

Source quench Choke packet
Redirect Teach a router some geography

Echo Ask a machine if it is alive (ping)
Echo reply Yes, I am alive (ping response)

Timestamp request Same as Echo request, but with timestamp
Timestamp reply Same as Echo reply, but with timestamp

Table 1: The principal ICMP message types

3. Parameter Problem: This indicates that some of the parameters in the
header field are corrupted. This can be computed using the header check-
sum as discussed in Lecture 3. This could be due to a bug in the sending
host’s IP software or possibly in the software of a router encountered along
the way.

4. Source quench: This was formerly used to throttle hosts that were send-
ing too many packets. It is rarely used any more because when congestion
occurs, these ICMP source quench packets only lead to more traffic on the
network, adding more fuel to the fire!.

5. Redirect message: This message is used when an intermediate router
notices that a packet is being routed wrongly. The router then informs
the sending host about a shorter path that exists between the source and
the destination.

6. Echo request and reply: This is the ping command used to see if the
destination is reachable and alive. Upon receiving the echo request, the
destination host is expected to send an echo reply message back. The
timestamp request and reply are similar, except that the arrival of the
message and the departure time of the reply are recorded. This facility is
used to measure network performance.

Dynamic Routing Protocols:

Dynamic routing occurs when routers talk to adjacent routers, informing each
other of what networks each router is connected to. The routers must com-
municate using a routing protocol, of which there are many to choose from.
The process on the router that is running the routing protocol, communicating
with its neighboring routers, is usually called a routing daemon. The daemon
updates the kernel’s routing table with information it receives from the neigh-
boring routers. The use of dynamic routing does not change the way the kernel
performs routing at the IP layer, also called the routing mechanism, as we de-
scribed in Lecture 3. The kernel still searches its routing table in the same
way, looking for host routes, network routes, and default routes. What changes
is the information placed in the routing table - instead of coming from a user
specified route command in the bootstrap files, the routes are added and deleted

10-12-2

dynamically by a routing daemon, as routes change over time. We will refer to
the process of updating the routing tables dynamically the routing policy; this
is not to be confused with the routing algorithm we described in Lecture 3.

The internet is organized into a collection of autonomous systems, each of
which is normally administered by a single entity. For example you can consider
McMaster University to be one autonomous system. Each autonomous system
can select its own routing protocol to communicate between the routers in that
autonomous system. This is called an interior gateway protocol (IGP). The two
most popular IGPs are:

1. Routing Information Protocol (RIP).

2. Open Shortest Path First protocol (OSPF)

RIP was the first protocol that was implemented, while OSPF is intended as a
replacement of OSPF. In the next two subsections, we describe these routing
protocols in detail together with sample examples.

Separate routing protocols called exterior gateway protocols (EGPs) are used
between the routers in different autonomous systems. A commonly used EGP
protocol is the Border Gateway Protocol (BGP). We will not discuss EGPs
further in this lecture. A nice description of BGP appears in Chapter 15 of
Comer.

Routing Information Protocol:

One of the most widely used IGPs is the Routing Information Protocol (RIP),
originally designed at the University of California at Berkeley to provide con-
sistent routing on their local networks. It is also known as the Distance vec-
tor routing algorithm, the distributed Bellman-Ford routing algorithm, and the
Ford-Fulkerson algorithm after the researchers who developed it.

In distance vector routing, each router maintains a routing table indexed by,
and containing one entry for, each router in the subnet. This entry contains two
parts: the preferred outgoing line to use for that destination and an estimate of
the time or distance to that destination. The metric used might be the number
of hops, time delay in milliseconds, or something similar.

As an example, assume delay is used as a metric and that the router knows
the delay to each of its neighbors. Once every 30 sec each router sends its
neighbors a list of its estimated delays to each destination. It also receives a
similar list from each neighbor.

Let G = (V, E) be a graph, whose vertex set V = (1, . . . , n) represents the
various routers. Let {i, j} ∈ E represent the edge between nodes i and j. Let
wij represent the weight of edge {i, j} (for instance the weight could represent
the delay in seconds for a packet sent from router i to reach router j). Also,
let A(i) represent the adjacency list of router i, i.e., the list of routers adjacent
(connected by an edge) to router i.

Consider the router 1. Let xk
i , i = 1, . . . , n be 1’s estimate of how long it

takes to get to router i in the kth iteration. Similarly wk
ij represents the weight

of edge {i, j} in the kth iteration (since these weights dynamically change with
time). Initially x0

1 = 0 (it takes a router 0 seconds to send a packet to itself),
and x0

i = inf, i = 2, . . . , n (the other routers have not advertised their estimates
as yet, so router 1 does not know these delays).

10-12-3

The kth iteration of the RIP algorithm for router 1 has the form:

xk
i = min

j∈A(i)
(wk

ij + xk−1
j), i = 2, . . . , n,

x0
1 = 0

x0
i = ∞, i = 2, . . . , n

(1)

We say that the algorithm converges after k iterations if xk
i = xk−1

i , ∀i. Note
that the old routing table for router 1 is not used in the calculation of its
new routing table; it is however used to update the new routing tables of the
neighboring routers.

Each iteration of the above algorithm is repeated at all the routers within
the autonomous system.

The updating process is illustrated for the subnet in part(a) of Figure 1.
The first four columns of the table in part(b) of Figure 1 show the delay vectors
received from the neighbors of router J (these are the xi values computed in the
previous iteration). Suppose that J has estimated its delay to neighbors A, I,
H, and K as 8, 10, 12, and 6 msec, respectively. Now consider how J computes
its new route to router G. It knows that it can get to A in 8 msec, and A claims
to be able to get to G in 18 msec, so J knows it can count on a delay of 26
msec to G if it forwards packets for G to A. Similarly, it computes the delay to
G via I, H, and K as 41(31+10), 18(6+12), and 37(31+6) msec, respectively.
The best of these values is 18, so router J makes an entry in its routing table
that the delay to G is 18 msec and that the route to use is via H. The same
calculation is performed for all the other destinations. The new routing table
for router J shown in the last column of the table in part(b) of Figure 1.

The Count-to-Infinity Problem

Distance vector routing works in theory but has a serious drawback in practice:
although it converges to the correct answer, it may do so slowly. In particular,
it reacts rapidly to good news, but slowly to bad news. Consider a router whose
best route to a given destination X is large. If on the next exchange one of its
neighbors A suddenly reports a short delay to X, the router just switches over
to using the line to A to send traffic to X.

To consider how quickly good news propagates consider the network on
Figure 16.4 of Comer. We will assume that the metric employed is the hop-
distance. Let us assume that the connection of router R1 to network 1 is down
initially. So currently the distance vectors of routers R1, R2, and R3 to network
1 are all ∞. Once this connection is up, since R1 has a direct connection to
network 1, it will update its distance vector to network 1 to be 1. It will include
this route in its broadcast. In this first exchange, router R2 has learned this
route from R1, installed the route in its routing table, and advertises the route
at distance 2. During R2’s next broadcast (2nd exchange, 30 sec later), R3 has
learned the route from R2 and advertises it at distance 3. Thus we see that the
RIP protocol propagates the good news quickly through the entire network.

Now suppose R1’s connection to network 1 fails. R1 will update its routing
table immediately to make the weight of this link ∞. However, based on the
broadcast it receives from routers R2 and R3 (in this first exchange), it will
update its distance vector to network 1 to be 3 (based on the information it
received from router 2, since 3(2+1) is smaller than ∞), and set its route to
network 1 to be through router R2 (i.e. R2 is the next hop router). In the

10-12-4

(a)

A B C D

E

I J K L

F G
H

Router

0
12
25
40
14
23
18
17
21
9

24
29

24
36
18
27
7

20
31
20
0

11
22
33

20
31
19
8

30
19
6
0

14
7

22
9

21
28
36
24
22
40
31
19
22
10
0
9

8
20
28
20
17
30
18
12
10
0
6

15

A
A
I
H
I
I
H
H
I
−

K
K

To A I H K Line

New estimated
delay from J

A
B
C
D
E
F
G
H
I
J
K
L

JA JI JH JK
delay delaydelaydelay

is is is is
8 10 12 6

New
routing
table
for J

Vectors received from
J's four neighbors

(b)

Figure 1: (a) A subnet. (b) Input from A, I, H, K, and the new routing table
for J

10-12-5

next exchange router R2 will set its hop distance to network 1 to be 4(3+1) and
set its route to network 1 to be to be through router R1. In the 3rd exchange
router R1 will set its distance vector to network 1 to be 5(4+1) and maintain
that is route to network 1 is through router R2 and so on. During this series
of exchanges every datagram intended for network 1 will shuttle back and forth
between routers R1 and R2 (in an endless loop) until the datagram’s time-to-live
counter expires.

It is possible to solve the slow convergence problem by using a technique
known as split horizon update. When using split horizon, a router does not
propagate information about a route back over the same interface from which
the route arrived. In the above example, split horizon prevents router R2 from
advertising a route to network 1 back to router R1 (in the first exchange), so if
R1 loses connectivity to network 1, routers R1, R2 and R3 all understand that
there is no route to network 1. However, the split horizon heuristic does not
prevent routing loops in all possible topologies either.

A good overview of the RIP message format appears in Section 16.3 of
Comer.

Link-State (SPF) routing

Distance vector routing was used in the original internet (ARPANET) network
until 1979, when it was replaced by link state routing. The idea behind link
state routing is simple and can be stated as five parts. Each router must do the
following:

1. Learning about the Neighbors: When a router is booted, its first task
is to learn who its neighbors are. It accomplishes this goal by sending
a special HELLO packet on each point-to-point line. The router on the
other end is expected to send back a reply with its IP address.

2. Measuring Line Cost: The link state routing algorithm requires each
router to know, or at least have a reasonable estimate of the delay to each
of its neighbors.The most direct way to determine this delay is to send
over the line a special ECHO packet that the other side is required to
send back immediately. By measuring the round trip time and dividing
by two, the sending router can get a reasonable estimate of the delay.
For even better results, the test can be conducted several times, and the
average used.

3. Building Link State Packets: Once steps 1 and 2 are completed, the
next step for each router is to build a packet containing all the data. The
packet starts with the identity of the sender, followed by a sequence num-
ber and age (to be described in Step 4), and a list of neighbors. For each
neighbor, the delay to that neighbor is given. The hard part is deter-
mining when to build the state packets. One possibility is to build them
periodically, i.e., at regular intervals (say 30 minutes). Another possibil-
ity is to build them when some significant event occurs such as a line or
neighbor going down or coming back up again or changing its properties
appreciably (this important partial information could be exchanged every
30 sec, the update period for RIP). An example subnet is given in part (a)
of Figure 2 with delays shown as labels on the lines. The corresponding
link state packets for all six routers are shown in part (b) of Figure 2.

10-12-6

B C

E F

A D
61

2

8

5 7

4 3

(a)

A
Seq.
Age

B C D E F

B 4
E 5

Seq.
Age
A 4
C 2

Seq.
Age
B 2
D 3

Seq.
Age
C 3
F 7

Seq.
Age
A 5
C 1

Seq.
Age
B 6
D 7

F 6 E 1 F 8 E 8

Link State Packets

(b)

Figure 2: (a) A subnet. (b) Link State packets for this subnet.

10-12-7

4. Distributing the link state packets: The trickiest part of the algo-
rithm is in distributing the link state packets reliably. As the packets are
obtained by neighboring routers, they may change their routes based on
the updated network topology. Consequently, different routers may be us-
ing different versions of the topology, which could lead to inconsistencies,
loops etc. The fundamental idea is to use flooding to distribute the link
state packets. To keep the flood in check, each packet contains a sequence
number that is incremented for each new packet sent. Routers keep track
of these packets. When a new link state packet comes in, it is checked
against the list of packets already seen. If it is new, it is forwarded on all
lines, except the one it arrived on. If it is a duplicate, it is discarded. If
a packet with a sequence number lower than the highest one seen so far
arrives, it is rejected as being obsolete since the router has more recent
data. Now if any router crashes, it could lose track of the sequence num-
ber. The solution to this problem is to add an age (TTL) to each packet.
Each router decrements this field by 1, and the moment this field drops
to zero, the packet is discarded. This prevents a link state packet from
cycling endlessly in the system and adding to the network traffic.

5. Computing the new routes: Once the router has accumulated a full set
of link state packets, it can construct the weighted graph for the network.
Every link is, in fact represented twice, one for each direction. The two
values could then be averaged or perhaps ever employed separately. Now
Dijkstra’s algorithm can be run locally to construct the shortest path to all
possible destinations. The results can be employed in the routing tables,
and the routing algorithm of Lecture 3 can then employed.

We will briefly describe Dijkstra’s shortest path algorithm. In the algorithm
each node is labelled (in parentheses) with its distance from the source node
along the best known path. Initially, no paths are known, so all nodes are
labelled with infinity. As the algorithm proceeds and paths are found, labels
may change, reflecting better paths. A label may be tentative or permanent.
Initially, all labels are tentative. When it is discovered that a label represents
the shortest possible path from the source to that node, it is made permanent
and never changed thereafter. To illustrate how Dijkstra’s algorithm works,
consider the network in Figure 3. The edge weights represent the delay in
msec. We want to find the minimum delay path from node A to node D. The
iterations of the algorithm are shown in Figure 3. We start out by marking
node A as permanent, indicated by the filled in circle. Then we examine, in
turn, each of the nodes adjacent to A (the working node), relabelling each one
with the distance to A. Whenever a node is relabelled, we also label it with
the node from which the probe was made so that we can reconstruct the final
path later. Having examined each of the nodes adjacent to A, we examine all
tentatively labelled nodes in the whole graph and make the one with the smallest
label permanent (in this case B), as shown in part (b) of Figure 4. This one
becomes the next working node. We now start at B and examine all nodes
adjacent to it. If the sum of the label on B and the distance from B to the node
considered is less than the label on that node, we have a shortest path, so the
node is relabelled. This process is repeated until all the nodes in the graph are
labelled. The first 5 iterations of Dijkstra’s algorithm are illustrated in Figure
4. The length of the shortest path from A to D is 10, and the shortest path
is ABEFHD. While constructing the shortest path from node A to node D,

10-12-8

A
2

B C

D
E F

G H

2

7

2

6
1

4

3

2
2

3

NETWORK USED IN LINK−STATE ROUTING
Figure 3: The network for Dijkstra’s algorithm

10-12-9

A D1

2

6

G

4

(a)

F (∞, −) D (∞,−)

A

B 7 C

2

H

3
3

2

2 FE

1

22

6

G

4

A

(c)

A

B (2, A) C (9, B)

H (∞, −)

E (4, B)

G (6, A)

F (6, E) D (∞,−)A

(e)

A

B (2, A) C (9, B)

H (9, G)

E (4, B)

G (5, E)

F (6,E) D (∞,−)A

(f)

A

B (2, A) C (9, B)

H (8, F)

E (4, B)

G (5, E)

F (6, E) D (∞,1)A

(d)

A

B (2, A) C (9, B)

H (∞, −)

E (4, B)

G (5, E)

F (∞, −) D (∞, −)A

H

E

G
(b)

B (2, A) C (∞, −)

H (∞, −)

E (∞, −)

G (6, A)

Figure 4: Dijkstra’s shortest path algorithm

10-12-10

the algorithm also computed the shortest path to nodes B, E, F , and H (the
intermediate nodes in the shortest path from A to D). This is often referred to
as the optimality principle, which states that if router J is on the optimal path
from router I to router K, then the optimal path from J to K also falls along
the same route. To see this, let us call the part of the route from I to J as r1

and the route from J to K r2. If a route better than r2 existed from J to K,
it could be added with r1 to improve the route from I to K. This contradicts
our earlier assumption that route r1r2 from I to K was optimal.

The advantage of link state routing is that it avoids the count-to-infinity
problem encountered in RIP. Another advantages of link-state routing over RIP
are summarized in Section 16.9 of Comer.

Recommended Reading

1. Chapter 9 of Comer [1], and Chapter 6 of Stevens [2] for a detailed de-
scription of the Internet Control Message Protocol (ICMP). Chapter 7 of
Stevens also contains a nice discussion on the ping program.

2. Chapters 14 and 16 of Comer, and Chapter 10 of Stevens for dynamic
interior gateway protocols (IGPs). In particular, Sections 14.8 and 16.3
in Comer deal with RIP and the count-to-infinity problem. Section 14.12
in Comer deals with link-state routing. Chapter 15 of Comer deals with
Exterior gateway protocols (EGPs). A good description of RIP and OSPF
also appear in Sections 5.2.4 and 5.2.5 of Tanenbaum. In particular, the
network examples presented in this lecture are taken from these two sec-
tions of Tanenbaum.

References

[1] D.E. Comer, Internetworking with TCP/IP: Principles, Protocols, and Ar-
chitectures, 4th edition, Prentice Hall, NJ, 2000.

[2] W. Richard Stevens, TCP/IP Illustrated, Volume I: The Protocols, Ad-
dison Wesley Professional Computing Series, 1994.

[3] Andrew S. Tanenbaum, Computer Networks, 4th edition, Prentice Hall,
NJ, 2003.

10-12-11

