SFWR 4C03: Computer Networks and Computer Security

Lecturer: Kartik Krishnan

Feb 2-5 2004

Lectures 13-15

User Datagram Protocol (UDP):

UDP is a connectionless transport layer protocol: each output operation by an
application produces exactly one UDP datagram, which in turn causes one IP
datagram to be sent. This is different from a stream oriented protocol such as
TCP (see below), where the amount of data written by an application has little
to do with what actually gets sent in a single IP datagram.

The UDP layer is responsible for communicating between two applications
within two host computers; each application has a 16 bit port number assigned
to it. There are reserved port number for various applications (see Section
12.9 of Comer). On the other hand, the IP layer only provides communication
between the two host computers, and there can be multiple applications running
on each computer.

UDP provides no reliability: it sends the datagrams that the application
writes to the IP layer, but there is no guarantee that they ever reach their
destination. This is again unlike the TCP (see below).

Format of UDP messages:

Each UDP message is called a UDP datagram (just like an TP datagram, since
UDP is after all an extension of IP to provide communication between two
applications). Each UDP datagram has two parts: a UDP header and a UDP
data area. The header is divided into the following four 16 bit fields (see Figure
12.1 of Comer for more details):

1. Source port number (16 bits): This contains the 16 bit UDP protocol
source port number. This port number is optional; if used it specifies the
port to which replies should be sent; if not used, it should be zero.

2. Destination port number (16 bits): This contains the destination
port number, and it is used to demultiplex datagrams among the various
processes waiting to receive them in the destination computer.

3. UDP message length (16 bits): This is a count of bytes in the UDP
datagram, and includes the length of the UDP header and data (unlike
IP which includes only the header length). The minimum value is 8, the
length of the header alone.

13-15-1




4. UDP checksum (16 bits): This is optional; a value of zero indicates
that the checksum has not been computed. The UDP checksum covers
more information than is present in the UDP datagram alone. To compute
the checksum, UDP prepends a pseudo-header to the UDP datagram,
appends an octet of zeros to pad the datagram to an exact multiple of
16 bits, and computes the checksum over the entire object. The pseudo
header is shown in Figure 12.2 of Comer, and includes the 32 bit source
and destination IP addresses, a 8 bit protocol field which is 17 for UDP,
and a 16 bit UDP length (which is also present in the UDP header).
To compute a checksum, the UDP software computes the 16 bit one’s
complement sum of the pseudo header, UDP header, and user data, and
takes its 1s complement. If the calculated checksum is 0, it is stored as
all one bits (65535), which is equivalent in one’s complement arithmetic.
This is to distinguish it from 0 which implies that the checksum was not
computed. The purpose of prepending a pseudo header to the UDP header
before computing the checksum is to ensure that the UDP datagram has
reached its correct destination, since this requires the correct destination
IP address in addition to the correct destination port number.

Since the receiving UDP software requires the pseudo header while computing its
checksum, it needs to communicate with the receiving IP layer, which provides
it with these details. An alternative is that the sending UDP layer actually
obtains these details from the sending IP layer while it is filling out the UDP
datagram, and the sending IP layer has only to fill out the remaining fields
in the IP datagram. Thus, we see that there is a great degree of interaction
between the UDP and IP layers.

One area where UDP is especially useful is in client-server situations. Often
the client sends a short request to the server and expects a short reply back.
If either the request or the reply is lost, the client just times out and tries
again. Chapter 21 of Comer has a discussion on the client-server model. One
such application of UDP is DNS (Domain Name System). DNS is described in
detail in Chapter 24 of Comer. This is a program that returns the IP address of
some host name, for example, optlab.cas.mcmaster.ca. The client requests the
IP address of the host in a UDP datagram, and the server responds with the IP
address in another UDP datagram. No connection setup or release is required
as is the case with TCP (see below).

Transmission Control Protocol (TCP):

The Transmission Control Protocol (TCP) coordinates the transmission of data
between a pair of applications. Applications communicate by reading from and
writing to a socket that presents data as an ordered, reliable stream of bytes.
TCP provides a logical connection between two end points by building on top of
IPs packet-delivery service, i.e., we have a connection oriented protocol on top
on a connectionless protocol. The two end points are identified to be a pair of
integers (host, port), where host is the IP address for a host, and port is a 16 bit
TCP port number on the host. As in the case of UDP, there are assigned TCP
port numbers for various applications (see Figure 13.16 of Comer). The TCP
header appears in the data portion of the IP header. The routers inside the
network need not inspect the bits in the TCP header. Once the IP datagram
reaches the destination machine, the operating system inspects the TCP header

13-15-2



to direct the data to the appropriate application via a socket. The socket is
identified via the pair of integers described above. TCP must deal with the
fact that IP packets may be lost, corrupted, or delivered out of order. These
challenges are addressed by cooperation between the TCP sender and receiver.
Before transmitting data, the two end points must coordinate to establish the
TCP connection. During the data transfer, the end points cooperate to control
the flow of data and retransmit lost IP packets. In addition, each end point
adapts its transmission rate in response to congestion to avoid overloading the
network. The TCP header includes the necessary information to coordinate the
ordered, reliable delivery of segments.

TCP is a connection oriented protocol (analogous to the telephone network)
and unlike UDP and IP which are connectionless protocols (analogous to the
postal network). Also, unlike IP, TCP is an end to end protocol, i.e., it is
implemented only the sending and receiving machines. Intermediate routers do
not have any TCP layers.

TCP provides a full-dupler communication between two applications, i.e.,
data can flow in either direction with no apparent interaction. An application
process can terminate flow in one direction making the connection half du-
plex. One advantage of a full duplex communication is that the TCP software
can combine control information for one stream back to the source (acknowl-
edgements) in datagrams that also carry data in the opposite direction. This
phenomenon is called piggybacking, and it helps reduce network traffic.

Consider the transmission of a message from one application to another. The
operating system on the sending machine divides the message into segments;
each segment is a contiguous set of bytes that fits into a single IP packet. The
TCP header identifies the connection associated with the segment. Each seg-
ment has a sequence number that distinguishes it from other segments. The
recipient uses the sequence number for reordering packets that appear out of
order. If packet 2 arrives before packet 1, the operating system on the receiving
machine knows to wait for packet 1 before delivering the data to the receiv-
ing application. The TCP sender also includes a checksum computed over the
contents of the packet; the receiver recomputes the checksum and discards the
packet if the results do not match.

TCP achieves reliable transport over the unreliable IP layer by having the
receiver send acknowledgements to the sender, indicating that the packets have
been received. If the receiver has data awaiting transmission, the acknowl-
edgement and the outgoing segment could be included in a single packet, a
phenomenon known as piggybacking. The sender starts a timer once a packet
has been sent. If no acknowledgement is forthcoming before the timer is reset,
the sender assumes that the packet was lost, and transmits yet another copy.
Upon receiving at least one uncorrupted copy the packet, the receiver sends an
acknowledgement to the sender. If more than one copy arrives, the recipient
simply discards the extra copies. The acknowledgement scheme is illustrated in
Figures 13.1 and 13.2 of Comer.

TCP header details:

The TCP sender transmits each segment in a single IP packet, along with a
TCP header. The TCP header includes the following:

13-15-3



1. Source port number (16 bits): The 16 bit port number associated with
the TCP sender. The sender’s IP address is available in the IP header.

2. Destination port number (16 bits): The 16 bit port number associ-
ated with the TCP receiver. The receiver’s IP address is available in the
IP header too.

3. Sequence number (32 bits): The 32 bit sequence number identifies
the position of the first byte of the data contained in the packet. The
receiver uses the sequence number to identify where the segment fits in
the data byte stream and to reorder segments that arrive out of order.
Before transmitting the first segment, the sender selects an initial sequence
number that represents the beginning of the ordered byte stream. The
sequence number for all other segments exchanged during the connection
are relative to this initial sequence number.

4. Acknowledgement number (32 bits): To acknowledge the receipt of
data, the TCP header includes a 32 bit acknowledgement number. This
field indicates the next byte of data that the receiver expects to receive,
and is valid only if the ACK bit is set to 1.

5. Header length (4 bits): The 4 bit header length indicates the number
of 32 bit words in the TCP header. The header is usually 20 bytes long
(corresponding to five 32 bit words). Longer headers occur when the
sender uses T'CP options that contain additional control information.

6. Reserved (6 bits): The 6 bit field is reserved for future use.

7. TCP flags (6 bits): The TCP header also includes a 6 bit field with six
1 bit flags. These flags are the following:

(a) URG: The URG (Urgent) flag instructs the TCP receiver to inspect
the portion of the segment identified by the 16 bit urgent pointer
field in the TCP header.

(b) ACK: The ACK (Acknowledge) flag is set when the TCP segment
contains an acknowledgement. When the ACK bit is set, the 32 bit
acknowledgement field indicates how much data has been received by
the sender.

(¢c) PSH: The PSH (Push) flag indicates that the TCP receiver should
deliver the incoming data to the application’s socket.

(d) SYN: The SYN (synchronize) flag is set when establishing a TCP
connection (see below). When the SYN bit is set, the value of the
sequence number field identifies the initial sequence number.

(e) FIN: The FIN (finish) flag is set when the sender has finished trans-
mitting data.

8. Receiver window (16 bits): The 16 bit receiver window indicates the
number of additional bytes the receiver can handle beyond the data that
has been acknowledged so far. The TCP sender respects this limit to avoid
overflowing the receiver buffer.

9. TCP checksum (16 bits): The 16 bit checksum aids the TCP receiver
in detecting corrupted packets. In contrast to the IP header (see Lecture

13-15-4



3), the TCP checksum covers both the header and the data. The sender
computes the checksum over the header, data and some portions of the
IP header (see the discussion in computing the UDP checksum above).
The receiver recomputes the checksum and compares it with the value
in the TCP checksum header. If the answers differ, the receiver discards
the corrupted packet. The receiver does not acknowledge the receipt of
the corrupted packet. Hence the sender would eventually retransmit the
missing data.

10. Urgent pointer (16 bits): When the URG flag is set, the 16 bit urgent
pointer directs the receiver’s attention to a particular portion of the in-
coming data. The 16 bit urgent pointer identifies the last byte of urgent
data in terms of an integer offset from the sequence number in the TCP
header.

Opening and closing a TCP connection:

The SYN, ACK, FIN, and RST flags in the TCP header are used in opening
and closing a TCP connection. TCP segments with these flags set are sent in
response to system calls that open or close the corresponding socket. When an
application on host A creates a socket, the operating system on A coordinates
the establishment of the TCP connection with the application on host B. Es-
tablishing a TCP connection involves the following three-way handshake. This
handshake is illustrated in Figure 13.13 of Comer.

1. SYN from A to B: Host A initiates the connection by sending a packet
with the SYN bit set to 1. The SYN packet includes the initial sequence
number for the stream in the 32 bit sequence number field in the TCP
header. The SYN packet synchronizes the sequence number. The SYN
segment itself counts as part of the stream and consumes the first sequence
number. For example if the SYN packet has the sequence number of 4500
(say), then the first data segment from A would have a sequence number
of 4501 to identify the first byte of data.

2. SYN-ACK from B to A: The arrival of the SYN packet from A triggers
both the creation of socket and the transmission of an acknowledgement
packet from B to A. B sends a segment to A that has both the SYN and
ACK flags set to 1. The SYN flag initiates the reverse direction of the
connection (from B to A), and the ACK flag acknowledges receipt of A’s
SYN packet. The acknowledgement number in the header of B’s TCP
segment is set to the value one larger than the initial sequence number in
A’s SYN packet. As with A’s SYN packet, B’s SYN-ACK packet includes
an initial sequence number (which is unrelated to the sequence number
in A’s SYN packet). This sequence number marks the beginning of the
stream of bytes travelling from B to A.

3. ACK from A to B: Once the SYN-ACK packet has arrived, the con-
nection from A to B is complete, and the operating system in host A can
inform the application that the connection has been established, and the
application can now begin writing to and reading data from the socket.
However, at this time, the application on host B does not know if A has

13-15-5



received the SYN-ACK packet. So the third part of the three way hand-
shake involves sending an ACK packet from A to B to acknowledge the
creation of the connection from B to A. The ACK packet from A has
the acknowledgement number set to the value one larger than the initial
sequence number in B’s SYN-ACK packet. Upon receiving this packet,
the application in host B is ready to transmit data over its socket to the
application in A.

The application program on host A, initiating the connection, is said to perform
a passive open, while the application program on host B is said to perform an
active open. The operating system selects different sequence numbers for TCP
connections. Consider what could happen if every TCP connection used an
initial sequence number of 0. Suppose that a TCP connection between A and
B had an outstanding duplicate packet inside the unreliable network between
A and B that experienced a long transmission delay, but this packet eventually
makes it to the receiving host. Suppose that A and B close the TCP connection
once the original data transfer has completed. Later, A and B might establish
a new TCP connection with the same port numbers as the original connection.
Suppose that, after the new connection has been established, the duplicate
packet from the old connection finally reaches the destination. In this situation,
the recipient might mistakenly associate the old packet with the new connection
and deliver the data in this packet to the application. To avoid this problem
each connection begins with a different initial sequence number which is chosen
randomly.

Either end point can terminate the TCP connection. In our earlier example,
let this be the application on host B. This termination typically involves a
four-way handshake (illustrated in Figure 13.14 of Comer) which involves the
following:

1. FIN from B to A: The application on host B closes its socket and
transmits a TCP segment with the FIN flag set to 1. At this point, the
TCP layer on host B does not transmit any new data. The TCP layer
is however responsible for completing the ordered, reliable delivery of the
previous data sent to A. In addition, the TCP layer continues to receive
and acknowledge TCP segments from A. Like the SYN segment, the FIN
packet from B consumes one byte in the sequence number space.

2. ACK from A to B: Upon receipt of this segment, A transmits an ACK
packet with an acknowledgement number that is one higher than the se-
quence number in B’s FIN packet.

3. FIN-ACK from A to B: As soon as the application on host A is done,
the TCP layer on host A closes its socket and sends a FIN-ACK segment
to B. In this segment, A also acknowledges the receipt of B’s previous FIN
packet.

4. ACK from B to A: Upon receiving the ACK-FIN segment from A, B
transmits an ACK packet to acknowledge the closure of the connection
from A to B. Upon receiving this ACK segment, A knows that B has
received its FIN packet. At this point the connection between A and B
is closed. Transmitting any new data between A and B would require
opening a new TCP connection.

13-15-6



Sliding-window flow control:

The TCP sender limits the transmission of data to avoid overflowing the buffer
space at the receiving end. In theory, TCP could transmit data whenever the
application writes data into the socket. However, TCP limits the transmission
of data for two important reasons:

1. The sender should send more data than the receiver can store in its buffers
- transmitting excess data would overflow this buffer and result in lost
packets.

2. The sender should also not transmit data more quickly than the network
can handle - sending too aggressively overloads the network, creating con-
gestion that increases communication latency and the likelihood of lost
packets.

Each TCP sender thus limits the number of outstanding (unacknowledged) seg-
ments in the network using a sliding-window control. On the other hand to
avoid overflow of the buffer at the receiving end, packets from B to A include
the receiver window in the TCP header.

Maximum segment size:

Both the sender and the receiver need to agree on a maximum segment they
will transfer. TCP software uses the OPTIONS field in the TCP header to
negotiate the maximum segment size with the TCP software at the other end
of the connection. The following points require consideration when choosing a
maximum segment size for transmission:

1. The segment size should not be too small. For instance, if the segment
were carrying only one byte of data, then only ﬁ of the network bandwidth
is utilized for user data. This is because the TCP/IP headers themselves
take 20 bytes each.

2. On the other hand, extremely large segment sizes can also produce poor
performance. This is because large segments result in large IP datagrams.
When such datagrams travel across a network with small MTU, the routers
in the IP layer must fragment them. There is always a chance that a
fragment is lost, or transmitted out of order.

In theory, the optimum segment size occurs when the IP datagrams are as
large as possible without requiring fragmentation anywhere along the path from
source to destination. This is however a difficult task because intermediate
routers dynamically change paths in response to network congestion.

Retransmission of lost packets:

The retransmission of lost packets plays a crucial role in how TCP provides a
reliable delivery of a stream of bytes. IP does not inform the TCP sender when
the packet is lost; instead the sender must infer that a packet is lost based on
the lack of response from the receiver. The receiver acknowledges receipt of
data from the sender by transmitting acknowledgments - packets with the ACK

13-15-7



bit set, with the acknowledgement number indicating the next byte expected
in the stream of bytes from the sender; the acknowledgement information can
be piggybacked with the data the receiver sends. The sender can infer that the
packet is lost in two ways; we discuss both in detail below:

1. Retransmission timeout: The sender sets a retransmission timer after
transmitting data to the receiver. If the timer expires before the acknowl-
edgement arrives, the sender assumes that the packet was lost en route
to the receiver. Selecting the appropriate value for the retransmission
timeout (RTO) is a delicate process. Setting RTO too low results in a
false alarm, and the sender unnecessarily sends a segment that was not
actually lost. On the other hand setting RTO too high postpones the
detection of a lost segment, resulting in unnecessary delay in retransmit-
ting the segment. The right value of the retransmission timeout depends
on the distance between the sender and the receiver, as well as network
congestion. The appropriate RTO varies from one situation to another,
and the TCP sender learns the appropriate RTO value by estimating the
round trip time (RTT) to the receiver - the time between the transmis-
sion of a packet and the receipt of an acknowledgement. Based on these
measurements, the sender can estimate the average RTT, as well as its
variance. The RTO is set to the average RTT plus an additive factor that
depends on the variance of the RTT’s computed for different samples. See
Sections 13.16 and 13.19 of Comer for more details. In theory, although
measuring the round trip travel time (RTT) is trivial, complications arise
whenever segments are retransmitted. This is because acknowledgements
are cumulative (see point (2) below) in that the acknowledgement refers
to data received, and not to the instance of the specific datagram that
carried the data. To see this, consider the retransmission of a segment
that was believed to be lost. This TCP segment which is retransmitted
is identical to the original segment except that it travels in another IP
datagram. When an acknowledgement is received for this segment from
the receiver, the sender has no way of knowing whether this acknowledge-
ment corresponds to the original or retransmitted TCP segment. Thus
TCP acknowledgements are ambiguous. Thus when computing the RTT,
one adopts Karn’s algorithm where one ignores samples corresponding to
retransmitted segments, but uses a backoff strategy where one multiplies
the previous RTT value by a multiplicative factor (say 2), utilize this value
as the new RTT until a valid sample (corresponding to an acknowledged
packet) is obtained. Once a valid sample is obtained TCP recomputes the
new RTT using the round trip estimate for the new sample. See Section
13.17 and 13.18 of Comer for more details.

2. Duplicate acknowledgements: In some cases, the sender can infer
that a packet is lost based on duplicate acknowledgements. Consider that
sender A starts with the initial sequence number of 4500 and transmits
data in 100-byte segments, and the length of the sliding window is 4. The
sequence number 4500 represents the opening of the TCP connection. The
first data segment has sequence number 4501 and length 100 and spans
bytes 4501 to 4600, the 2nd segment has sequence number 4601 and spans
bytes 4601-4700 and so on. Suppose that B receives the 1st, 2nd and 4th
segments, while the 3rd data a segment has been lost or delayed. Because
B has received only 200 contiguous bytes of data, the 2nd and the 3rd

13-15-8



acknowledgements on receipt of 2nd and 4th segments would both have
an acknowledgement number of 4701 (4501 + 200), constituting duplicate
acknowledgements. Here byte number 4701 is the sequence number of the
next data byte that B expects to receive. Thus the TCP acknowledgement
scheme is cumulative because it reports how much of the data stream it
has accumulated. A cumulative acknowledgement is less efficient in the
sense that the sender has no way of knowing that the 4th segment (in this
case) was actually received. Receiving duplicate acknowledgements allows
the sender to infer that the 3rd packet may be lost. In some cases, the
sender could perform a fast retransmission without having to wait for the
timer to expire resulting in a better recovery from packet loss.

Forced Data Delivery:

Consider a user logged in a remote machine and typing on his keyboard. The
user expects that the characters he types be echoed on the computer screen of
his local machine. If the sending and receiving TCPs buffer the data rather
than sending it or passing it to the receiving application, the remote machine
response will be delayed. Thus, to accomodate such interactive applications,
TCP provides a push operation (identified by the PSH flag set to 1). The sending
application can use the operation to ensure that the sending TCP delivers the
data immediately; the receiving TCP too delivers this data to the receiving
application without delay. Thus, in the above interactive session the sending
application uses the push function after every keystroke by the user.

Urgent Mode:

TCP provides an urgent mode, allowing one end to tell the other end that
urgent data of some form has been placed in the normal stream of data. This
notification is provided by setting the URG flag to 1; the 16 bit urgent pointer
field is then set to a positive offset that must be added to the sequence number
field in the TCP header to obtain the sequence number of the last byte of urgent
data. The URG flag is used to alert interactive applications, such as Telnet, to
the presence of control characters (e.g. CTRL C) in the data stream. A user
might type such a control character if the program executing on the remote
machine is misbehaving, and the user wants the remote server to terminate the
program.

TCP congestion control:

The TCP layer adapts to network congestion by decreasing the transmission
rate. Typically congestion occurs when a collection of aggressive TCP connec-
tions overload the network. This results in a number of lost packets, which
then have to be retransmitted. Retransmission of these packets would only ex-
acerbate the congestion. The connectionless nature of the IP protocol makes
it difficult for the routers inside the network to control congestion. Thus the
responsibility for congestion control is relegated to the end hosts.

The TCP sender adjusts the data transmissions based on a sliding window
that depends on the available buffer space at the receiver known as the receiver

13-15-9



window, and the available bandwidth in the network represented by the con-
gestion window. The sender transmits data based on the minimum of the two
values. Upon detecting that a packet has been lost, the sender decreases the size
of the congestion window to lower the transmission rate. On the other hand in
the absence of packet loss, the TCP sender gradually increases the congestion
window to transmit data more aggressively.

TCP implements an additive increase and a multiplicative decrease algorithm
to change the size of the congestion window. In the absence of packet loss, the
sender linearly increases the congestion window, one segment at a time until
the size of segments in the window is the maximum segment size (MSS) for the
TCP connection. For an Ethernet network with an MTU of 1500 bytes, the
MSS would be 1460 bytes (after excluding 40 bytes for the TCP/IP headers).
In response to packet loss, the sender multiplicatively (quickly) decreases the
size of the congestion window. In fact after receiving the 3rd duplicate ACK,
the congestion window is set to one half the current window size. The TCP
sender also backoffs the RTTs of the segments in the current congestion window.
The process continues until the congestion window has size 1. This process of
incrementing and decrementing the size of the congestion window amounts to
experimenting with the network to determine the appropriate transmission rate.

Once congestion ends, TCP initiates a slow start recovery phase, where the
congestion window starts at the size of a single segment, and this window size
is increased by one each time an acknowledgement comes through. Slow start
avoids swamping the internet with additional traffic immediately after conges-
tion clears or when a new TCP connection is started. The term slow start
is actually a misnomer because the congestion window grows multiplicatively
rather than linearly. This is because TCP initializes the connection window to
1, sends an initial segment, and once an acknowledgement comes through in-
creases this size to 2. It now sends 2 segments and waits for acknowledgements.
When the two ACKs come through, it increases the window size to 4 and so
on. Thus in each iteration the window size is growing by a factor of 2. The
slow start phase terminates when the congestion window reaches the slow start
threshold, which is usually set to one half of its original size before congestion.
Once this threshold is reached, the TCP sender now increases the congestion
window linearly in response to ACKs received. More details are available in
Section 13.20 of Comer.

Silly Window Syndrome:

Consider a TCP connection that has been established between two applications.
When this connection is first established, the receiving TCP allocates a buffer
of K bytes (say), and advertises this in the ACKs it sends. If the sending
application generates data quickly, the sending TCP will transmit segments
which quickly fill up the receiver’s buffer. Eventually, the sender will receive
an acknowledgement from the receiver, that advertises an available buffer space
of 0 bytes. Once the receiving application has read one byte of data from this
full buffer, the TCP on the receiving machine can use an ACK that specifies
a buffer size of 1 byte. If this is the case, the sending TCP responds to this
window advertisement by sending a TCP segment with 1 byte of data. This
results in the two TCPs exchanging TCP segments containing only 1 byte of
data resulting in a phenomenon known as silly window syndrome.

13-15-10



Transferring such small segments consumes unnecessary network bandwidth,
and also introduces unnecessary computational overhead. Both the receiving
and sending TCPs work to avoid this problem in the following manner:

1. Receive-side silly window avoidance: Before sending an updated win-
dow advertisement after advertising a zero window, the receiving TCP
waits for space to become available that is at least 50% of the total buffer
size or equal to a maximum sized segment. The receiving TCP also delays
acknowledgements when silly window avoidance specifies that the window
is not sufficiently large to advertise. The ACK is in fact piggybacked with
data sent, or with future window advertisements.

2. Send-side silly window avoidance: When a sending application gen-
erates additional data to be sent over a connection for which previous data
has been transmitted but not acknowledged, the sending TCP places the
new data in its output buffer, but does not send additional TCP segments
until there is sufficient data to fill a maximum sized TCP segment. If,
however, an acknowledgement arrives while this buffer is being filled, the
sending TCP sends all the data that has accumulated in the buffer. This
is also commonly known as Nagle’s algorithm.

Recommended Reading

1. Chapter 12 of Comer [1], and Chapter 11 of Stevens [2] for a discussion of
UDP.

2. Chapter 13 of Comer for a discussion of TCP. Chapters 19-25 of Stevens
on the other hand provide a detailed description of TCP interspaced with
several examples. Chapter 6 of Tanenbaum [3] also has a good discussion
of transport protocols including TCP and UDP.

References

[1] D.E. COMER, Internetworking with TCP/IP: Principles, Protocols, and Ar-
chitectures, 4th edition, Prentice Hall, NJ, 2000.

[2] W. RICHARD STEVENS, T'CP/IP Illustrated, Volume I: The Protocols, Ad-
dison Wesley Professional Computing Series, 1994.

[3] ANDREW S. TANENBAUM, Computer Networks, 4th edition, Prentice Hall,
NJ, 2003.

13-15-11



