SFWR 4C03: Computer Networks and Computer Security

Lecturer: Kartik Krishnan

Feb 23-26 2004

Lectures 19-21

Remote login (Telnet):

; e .
Telnet permits a user to connect to an account on a remote machine. A client
program running on the user’s machine communicates using the Telnet protocol
with a server program running on the remote machine.

The Telnet application:

The user (say Kartik) has an account on both the local and remote machines.
For example, Kartik on farkas.mcmaster.ca types telnet optlab.cas.memaster.ca

at his user prompt. Here, farkas.mcmaster.ca is the client and optlab.cas.mcemaster.ca

is the server. The Telnet client would perform a methotrezate() call to deter-
mine the IP address of optlab.cas.mcmaster.ca. Then the client would create a
socket to communicate with the Telnet server. The server prompts Kartik for
a login identifier - the name of the user’s account on the remote server followed
by a password. The Telnet users interact with the remote machine in the same
way they would interact with their local machine. The client relays Kartik’s
keystrokes to the remote server, and the remote server displays them on its
pseudo terminal (which is actually the display screen on the client machine).

The Telnet protocol:

The Telnet client program performs two important functions - interacting with
the user terminal on the local host and exchanging messages with the Telnet
server. The client connects to port 23 on the remote machine, which is the
port number reserved for Telnet servers. The TCP connection persists for the
duration of the login session. The client and the server maintain the connection,
even when the user interrupts the transfer of data, for example by hitting cntl-C.

Since Telnet is designed to work over two hosts on different platforms, the
protocol assumes that the two hosts run a Network Virtual Terminal (NVT).
The TCP connection is set up across these two NVT terminals. The NVT is a
very simple character device with a keyboard and a printer - data typed by the
user on the keyboard is translated by the client software into NVT format and
sent via its NVT terminal to the server, and data received in NVT format from
the server is translated by the client into the local machine format and output
to the printer (see Figure 25.2 of Comer).

The NVT terminals on the two hosts exchange data in the 7-bit U.S. variant
of the ASCII format, with each character sent as an octet with the first bit set to

19-21-1

0. Some control information, such as end-of-line indication, is transmitted as the
2 character sequence CR (carriage return) followed by an LF (linefeed). Each
Telnet control message starts with the special octet (Interpret as Command
(TAC) octet of all 1s) to ensure that the recipient interprets the subsequent
octets as a command. Otherwise, each octet is interpreted as data (e.g., a user
keystroke). Sending control messages on the same connection as the data is
referred to as inband signaling. The initial control messages between the client
and the server are used to exchange information about their capabilities (Telnet
option negotiation). For example, the client may indicate the type and speed
of its terminal, and whether data is to be sent one character or one line at a
time. More details on Telnet option negotiation are available in Section 25.8 of
Comer. After the capabilities exchange, the server instructs the client to send
a login identifier and password. Once the authentication completes, the user
interacts directly with the remote machine. The client application relays user
keystrokes to the server, and the server relays the output back to the client,
using inband signaling, with the interpretation that commands follow the IAC
octet of all ones.

Telnet cannot rely on the conventional data stream alone to carry such con-
trol sequences between client and server. To see this, consider the previous
interaction of Kartik with the remote server optlab.cas.mcmaster.ca. Kartik is
writing into a file on this remote machine, and suppose the TCP connection
set up on remote server (during the Telnet session) is misbehaving. As a result,
none of Kartik’s subsequent keystrokes are read, and echoed on the local screen.
Now, Kartik wants to terminate writing into this file. He does this by typing
entl-C on his keyboard, which relays the control sequence IAC IP to the remote
machine. Suppose also that receiving hosts’ TCP buffers are full, and it cannot
receive any further information from the sender (it discloses this over the TCP
connection by advertising a window size of zero). So to ensure that Kartik’s
entl-C' command gets through, Telnet uses an out of band signal. So, in this
case, the Telnet client sets a TCP segment with the URG flag bit set to 1. This
TCP segment bypasses flow control and reaches the server immediately. The
server discards all data until it finds the control sequence cntl-C following the
TAC octet, and Kartik’s session with the file on the remote machine is termi-
nated. However, the Telnet session on the server is not terminated, and the
server is back to its normal operation.

File Transfer Protocol (FTP):

FTP allows a user to copy files to and from a remote machine. The client
program also sends commands to the server program to coordinate the copying
of files between the two machines on behalf of the user.

The FTP application:

The FTP client connects to the remote machine which prompts the user to
enter a login identifier and a password. However, some users may not have
their own accounts on the remote machine. To grant access to a broad set of
users, many FTP servers have a special account (e.g. anonymous) that does
not require password information. Instead, the user logs in using guest or his
email address as password. The FTP server coordinates access to a collection
of files in various directories. In case of anonymous FTP, the server typically

19-21-2

has a special directory, with one or more subdirectories, that can be accessed
by the client. The user logged into the FTP server can traverse through the
directories of files on the remote machine, and send or receive files. This is
typically done via the command-line interface. The interface may also allow
the client to send or receive multiple files with a single command. Recent
FTP client applications provide a menu-based graphical user interface. For
instance, a Web browser allows users to specify the desired file as an URL (e.g.,
ftp://ftp.optlab.cas.mcmaster.ca/midterm.pdf). In this case, the web browser
connects to the FTP server as an anonymous user and sends a sequence of FTP
commands to fetch the requested file.

The FTP protocol:

FTP differs from other applications such as Telnet since it uses separate TCP
connections for control and data. Recall that in Telnet both control information
and data are sent over the same TCP connection using in-band signaling. The
two TCP connections in FTP are:

1. The control connection is established in the normal client-server fashion.
In this case, the server does a passive open (is listening) on port 21 for FTP,
and waits for the client connection. The client does an active open (the
2nd handshake in a TCP connection) to establish the control connection.
The client uses an ephemeral port number (above 1023) for the control
connection. This control connection stays up for the entire time that
the client communicates with this server. This connection is used for
commands from the client to the server and for the server’s replies. The
IP type of service for the control connection should be to minimize delay
in passing these commands over the TCP connection.

2. A data connection is created each time a file is transferred between the
client and the server. The IP type of service for the data connection should
be to maximize throughput since this connection is file transfer, and we
want to send this entire file over a high bandwidth line.

The specification of FTP includes more than 30 different commands, which are
transmitted over the control connection in NVT ASCII format. The commands
are not case-sensitive and may have arguments; each command ends with a
two character sequence of a carriage return (CR) followed by a line feed (LF). It
must be emphasized here that these commands are different from the commands
typed by the user at the interface provided by the client. Transferring a single
file for instance requires only a single user-level command (e.g., put or get), but
this single command triggers the client to send a set of FTP commands to the
server. The FTP server responds to each command with a three-digit reply code
(for the FTP client) and an optional text message (for the user).

The control connection persists over a sequence of FTP commands, as the
client and the server continue their dialogue. The typical interaction starts with
a command that identifies the user on the server machine followed by another
command to send the user password. The arguments for these commands are
gleaned from the user’s input (his account name and password). The server
uses this information to verify whether the user has an authorized account on
the remote machine, and in the case of anonymous FTP decides on the set of

19-21-3

directories to which the anonymous guest has access. The next set of com-
mands depend on the user request to send, receive, or view the files in a present
directory.

The actual file (data) transfer uses a separate TCP connection established
by the host sending the data. For instance if the user wants to retrieve the
file midterm.pdf from the remote server, the server initiates the creation of the
TCP data connection. In case, the user wants to put a file into the remote
machine, it is the client who initiates the creation of the TCP connection. The
data connection is usually established on port 20 on the server machine. In the
former case (when the file is to be retrieved from the server), the server does not
know the destination port for the FTP client. So before sending the command
to retrieve the file, the client instructs its operating system to allocate a port
number (above 1023) for such a transaction. This information is given to the
server via the control connection. The data connection is created (using the
usual TCP 3 way handshake), and the server writes the contents of the file, and
closes the connection. The client reads the bytes from its socket upto the end
of file (EOF) character. Also, unlike Telnet, FTP does not require the data
transfer to 7 bit ASCII characters (NVT format); it actually permits a wider
range of data types including binary files. The client requests the form of data
transfer using the control connection. In practice, each data transfer requires
a separate TCP connection. In contrast, the control connection can persist
across multiple data transfers. An example anonymous FTP session is shown
in Section 26.10 of Comer. Use this session to distinguish between the control
and data TCP connections. Also, can you identify our various discussions on
the FTP protocol in this session?.

Simple Mail Transfer Protocol (SMTP):

SMTP is used to send an email message from a local mail server to a remote
mail server. In addition, SMTP may be used from the user’s mail agent to the
local mail server, although alternatives like POP3 are also available.

The electronic mail application:

Delivering an email message from one user to another involves several com-
ponents. A user invokes an user agent to send and receive email messages.
Examples of these include elm, pine etc. The agent also supports a variety of
other features such as mail folders, email aliases, and an editor for composing
messages. In addition to providing an interface for the user, the agent also coor-
dinates the interaction with a local mail server, also called the message transfer
agent. The message transfer agent maintains each user’s mailbox and coordi-
nates the exchange of messages with message transfer agents in other locations.
For example, Kartik’s email address is kartik@optlab.cas.mcmaster.ca, so there
is a mailbox called kartik on the local mail server for Kartik’s messages. The
separation of functionality between the user agent and message transfer agent is
valuable - the user agent provides rich features for a single user, and the message
transfer agent provides reliable service for multiple users.

An important point regarding email is that it is not interactive unlike FTP
or Telnet. In sending an email, the user agent does not know if and when the
message reaches the recipient’s mail server, or if this recipient is online (con-
nected to his mail server) at this time. Thus, the messages composed by the

19-21-4

user via his user agent are kept in a spool area, and the local mail server (mail
transfer agent) inspects this spool area every 30 minutes collecting email mes-
sages deposited here. Similarly, at the receiving end, the mail for the recipient
is kept in the mailbox on the receiving mail server, if he/she is currently off-line.

The typical email set up is summarized in Figure 1. An email message

SMTP Infernet ~ Message User
transfer, / agent

/\\ agent [N
N %

(a) Sending Permangnt Mailoox” Receiving
host connection host

SMTP Infernet Message 0Ps POP3 User

iy

M
1 \ tanster, agent

server X
/‘\ agent /O

!

(b) Sending Mailbox™ 1SP's Dia-up User's
host maching connection PC

Figure 1: (a) Email when the receiver has a permanent Internet connection.
(b) Reading email when the user has a dial-up connection to an ISP.

consists of an envelope, header and a body. A typical email message is shown
in Figure 2. The body represents the text sent by the user. Each header field
starts on a separate line, and consists of a single string, followed by a colon and
another string (e.g., Date: Sun 29th Feb 2004 11.29:32 GMT). The envelope
includes the email addresses of the intended recipients. A listing of various
fields in the envelope and header appear in Figures 3 and 4 respectively.

Some of the fields in the header and envelope such as To and Subject depend
on the user input. Others, such as Date and Message-Id are set by the user
agent or the local mail server. The header, body and envelope information are
sent across the TCP connection between the two mail servers in the U.S. 7 bit
ASCII format. Each line ends with a two character sequence - a carriage return

19-21-5

Mr. Daniel Dumkopf
18 Willow Lane
White Plains, NY 10604

37¢)

United Gizmo
180 Main St

Boston, MA 02120

Sept. 1, 2002
Subject: Invoice 1081

Dear Mr. Dumkopf,

Our computer records
show that you still have
not paid the above invoice
of $0.00. Please send us a
check for $0.00 promptly.

Yours truly
United Gizmo

Header _>‘<— Envelope —

Name: Mr. Daniel Dumkopf
Street: 18 Willow Lane
City: White Plains

State: NY

Zip code: 10604

Priority: Urgent

Encryption: None

From: United Gizmo
Address: 180 Main St.
Location: Boston, MA 02120
Date: Sept. 1, 2002
Subject: Invoice 1081

Body

Dear Mr. Dumkopf,

Qur computer records
show that you still have
not paid the above invoice
of $0.00. Please send us a
check for $0.00 promptly.

Yours truly
United Gizmo

(@)

(b)

Figure 2: (a) Paper mail. (b) Electronic mail.

19-21-6

| Envelope

AN

r Message

Header Meaning

To E-mall addressies) of primary recinient(s
(¢ E-mal address(es) of secondary recipient()
Bec: E-mal address(es) for bind carbon copies

From: | Person or people who created the message

Sender | E-mal address of the actual sender

Received: | Ling added by each fransfer agent along the route

Retur-Path: | Can be used to identif & path back to the sender

Figure 3: Fields in the envelope.

19-21-7

Heaer Mganing

Date: | The date and time the message was sent

Reply-To: | E-mail adress to which replies should be sen

Message:(d: | Unique number for referencing tis message ater

In-Reply-To: | Message-Id of the message to which this is a ey

Reforences: | Otferrelevant Message-ds

Keywords: | User-chosen keywords

Subject: | Short summary of the message for the one-ing display

Figure 4: Fields in the header.

19-21-8

(CR) followed by a line feed (LF). Initially, email messages contained only text
data. Later, the Multipurpose Internet Mail Extensions (MIME) provided a
standard way to convert other types of data into text format for inclusion in
email messages. MIME includes additional headers that indicate the size and the
encoding of the contents of the message. Some of MIME headers are mentioned
in Figure 5. We also discuss some of the MIME types in Figure 6.

et e

JNE-Veson: Gt e MNE vesn

ket | Ml v g s s s

i e e

0 B o e O e

<>
p—

— — 3
—
=)
p—

o>
<>
-
pr—
<
[

—
j—
(9
I

I e ome o i o

Figure 5: Headers added by MIME.

The SMTP protocol:

The sending mail server establishes a TCP connection on port 25 of the receiv-
ing mail server. The combined header and body are transmitted from one mail
server to another using sequence of commands. The mail servers do not dis-
tinguish between the header and the body of the email messages although they
may prepend additional header fields to the message, such as Received. This
allows the recipient to trace the sequence of mail servers involved in transferring
the message. As in FTP, the sender issues a sequence of commands, one at a
time, and receives replies consisting of a three digit reply code and a textual

19-21-9

Type Subtype Description

Plain Unformatted text

Text , e g ol 2 :
Enriched Text including simple formatting commands
Gif Still picture in GIF format

Image o
Jpeg Still picture in JPEG format

Audio Basic Audible sound

Video Mpeg Movie in MPEG format

.| Octet-stream | An uninterpreted byte sequence

Application) ,))
Postscript A printable document in PostScript
Rfc822 A MIME RFC 822 message

Message | Partial Message has been split for transmission
External-body | Message itself must be fetched over the net
Mixed Independent parts in the specified order

, Alternative Same message in different formats

Multipart))
Parallel Parts must be viewed simultaneously
Digest Each part is a complete RFC 822 message

Figure 6: Various MIME types.

19-21-10

string. A typical exchange involves separate commands to
1. Identify the local mail server.
2. Identify the sender of the email message.
3. Identify each recipient of the email message.
4. Send the actual email message.

However, unlike FTP, SMTP uses a single TCP connection for both the com-
mand reply exchanges and the transfer of the email message.

In addition to transferring the message between the mail servers, delivering
an email message requires two additional steps involving the user agent - trans-
ferring the message to the local mail server, and the reception of the message
from the remote mail server. These transfers may also involve SMTP, although
other protocols can also be used. The reception of email messages from the
mail server typically uses other protocols such as Post Office Protocol (POP3)
(especially when the receiver has a dial-up connection to an Internet Service
Provider (ISP)), and the Internet Access Protocol (IMAP). The POP3 proto-
col downloads all the messages in the user’s mailbox on the mail server to his
machine, so that he can read his messages offline once the transfer is complete.
IMAP on the other allows the user to read messages directly (online) from his
mailbox on the mail server. IMAP is used for instance in Hotmail and Webmail.

The World Wide Web (HTTP):

I will return to a discussion of the world wide web (HTTP), which is perhaps
the most important application and amounts for more than 95% of the web
traffic, after I have discussed Computer Security. This will be covered in detail
in a subsequent lecture.

Recommended Reading

1. Chapter 25 of Comer [1], Chapter 26 of Stevens [2] for a discussion on
Telnet.

2. Chapter 26 of Comer, and Chapter 27 of Stevens [2] for a discussion on
FTP.

3. Chapter 27 of Comer, Chapter 28 of Stevens, and Section 7.2 of Tanen-
baum [3] for a discussion on SMTP and electronic mail. The various
figures in this lecture are taken from this chapter of Tanenbaum.

References

[1] D.E. COMER, Internetworking with TCP/IP: Principles, Protocols, and Ar-
chitectures, 4th edition, Prentice Hall, NJ, 2000.

[2] W. RICHARD STEVENS, TCP/IP Illustrated, Volume I: The Protocols, Ad-
dison Wesley Professional Computing Series, 1994.

[3] A.S. TANENBAUM, Computer Networks, 4th edition, Prentice Hall, 2003.

19-21-11

