
SFWR 4C03: Computer Networks & Computer Security Mar 15-18, 2004

Lecturer: Kartik Krishnan Lecture 27-30

1 Introduction

We compare the public and symmetric key cryptographic schemes in Table
1. We also compare how these two cryptosystems fare w.r.t confidentiality,
authentication and signature in Table 2.

Authenication Services:

Message authentication is a procedure to verify that received messages come
from the alleged source and have not been altered in transit. They may also
verify sequencing (any modification to a sequence of messages) and timeliness
(delay or replay of messages). On the other hand, a digital signature also
includes measures to counter repudiation by the source. There is an essential
difference between authentication and signatures: authentication is to protect
the two communicating parties (Alice/Bob) from a 3rd party (Oscar/Trudy)
who masquerades as either Alice or Bob, or modifications of the messages in
transit. Authentication cannot help if Alice and Bob do not trust each other;
a digital signature is a solution to this problem. Alice’s digital signature on a
message reassures Bob that it indeed came from Alice, and Alice cannot deny
sending this message at a later time.

Any message authentication or digital signature mechanism can be viewed
as having fundamentally two levels. At the lower level, there must be some sort
of function that produces an authenticator: a value to be used to authenticate
the message. This lower-level function is then used as a primitive in a higher-
level authentication protocol that enables a receiver to verify the authenticity
of a message. There are two classes of functions that can be used to produce an
authenticator:

1. Message Authentication Code: A publicly available function that uses
the plaintext message and a secret key to produce a fixed-length value
message that serves as the authenticator.

2. Hash function: A publicly available function that maps a plaintext mes-
sage of any length into a fixed-length hash value, which serves as the
authenticator.

27-30-1

Table 9.1 CONVENTIONAL AND PUBLIC-KEY ENCRYPTION

Conventional Encryption Public-Key Encryption
Needed to Work:

1. The same algorithm with the same key is used for
encryption and decryption.

2. The sender and receiver must share the algorithm and the
key.

Needed for Security:

1. The key must be kept secret.

2. It must be impossible or at least impractical to decipher a
message if no other information is available.

3. Knowledge of the algorithm plus samples of ciphertext must
be insufficient to determine the key.

Needed to Work:

1. One algorithm is used for encryption and decryption with a
pair of keys, one for encryption and one for decryption.

2. The sender and receiver must each have one of the matched
pair of keys (not the same one).

Needed for Security:

1. One of the two keys must be kept secret.

2. It must be impossible or at least impractical to decipher a
message if no other information is available.

3. Knowledge of the algorithm plus one of the keys plus
samples of ciphertext must be insufficient to determine the
other key.

Figure 1: Symmetric and Public-Key Encryption

27-30-2

Table 11.1 Confidentiality and Authentication Implications
of Message Encryption (see Figure 11.1)

 A Æ B: EK[M]
•Provides confidentiality

—Only A and B share K
•Provides a degree of authentication

—Could come only from A
—Has not been altered in transit
—Requires some formatting/redundancy

•Does not provide signature
—Receiver could forge message
—Sender could deny message

(a) Symmetric encryption

 A Æ B:

†

EKUb
M[]

•Provides confidentiality
—Only B has KRb to decrypt

•Provides no authentication
—Any party could use KUb to encrypt message and claim to be A

(b) Public-key encryption: confidentiality

 A Æ B:

†

EKRa
M[]

•Provides authentication and signature
—Only A has KRa to encrypt
—Has not been altered in transit
—Requires some formatting/redundancy
—Any party can use KUa to verify signature

(c) Public-key encryption: authentication and signature

†

A Æ B: EKUb
EKRa

M()[]
•Provides confidentiality because of KUb
•Provides authentication and signature because of Kra

(d) Public-key encryption: confidentiality, authentication, and signature

Figure 2: Confidentiality and Authentication Implications in Symmetric and
Public-key cryptography

27-30-3

Message Authentication code:

An overview of the entire process is given in Figure 3. message that serves as

Destination BSource A

M | |

K

C
(a) Message authentication

M E
| |

(c) Message authentication and confidentiality; authentication tied to ciphertext

Figure 11.4 Basic Uses of Message Authentication Code (MAC)

M

CK(M)

EK2[M || CK1
(M)]

CK1
(M)

CK1[EK2
(M)]

EK2[M]

C

CompareK

EM | |

K1
K2 K2

K2 K2

K1

K1

K1

C
(b) Message authentication and confidentiality; authentication tied to plaintext

MD
C

Compare

C

C

Compare

D
M

Figure 3: Basic use of a message authentication code

the authenticator. The MAC authentication technique involves the use of a
secret key to generate a small fixed-size block of data, known as cryptographic
checksum or MAC that is appended to the message. This technique assumes that
the communicating parties Alice and Bob share a common secret key K. When
Alice has a message to send to Bob, she calculates the MAC as a function of the
message M and the key K, i.e., MAC = CK(M). The message M plus MAC
are transmitted to the intended recipient. Bob performs the same calculation on
the received message, using the same key, to generate a new MAC. The received
MAC is compared to the calculated MAC (see Figure 3). If we assume that

27-30-4

only Alice and Bob know the identity of the secret key, then Bob is assured that
the message has not been altered in transit. The idea is that since the attacker
does not know the secret key he/she cannot alter the MAC to correspond to
alterations in the message. Also, Bob knows that the message came from Alice,
since she alone knew the secret key.

A MAC function is similar to encryption. One difference is that since the
MAC maps an arbitrary length message into a shorter fixed-length message, the
MAC function is general a many-to-one function.

Finally, computing the MAC function is much faster than conventional en-
cryption.

Hash function:

An overview of the entire process is shown in Figures 4 and 5. This is a variation
of the message authentication code. As with the MAC, a hash function accepts
a variable-size message M as input and produces a fixed-size output, referred
to as a hash code H(M). Unlike a MAC, a hash code does not use a key but
is a function only of the input message. The hash code is also referred to as a
message digest or hash value. The hash code is a function of all the bits of the
message and provides an error-detection capability. A change to any bit or bits
results in a change to the hash code.

A hash function is much faster to compute from a MAC since no key is
involved in the computation, but a MAC provides better authentication in an
unsecure channel.

The requirements for a hash function H are the following:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x.

4. For any given value h, it is computationally infeasible to find an x such
that H(x) = h. Thus, the hash function should be a one-way function.

5. For any given block x, it is computationally infeasible to find y 6= x with
H(y) = H(x). This is sometimes referred to as the weak collision resis-
tance property.

6. It is computationally infeasible to find any pair (x, y) such that H(x) =
H(y). This is referred to as the strong collision resistance property.

The first three properties are requirements for the practical application of a hash
function to message authentication. Sometimes as shown in Figure 5 (e) a secret
code S is added to the message M before their concatenation is hashed (note
that there is no encryption of the hashed component of the message here); it is
important here that fourth property hold so that the opponent cannot decipher
the secret code S. The fifth property prevents a forgery of a given message:
an attacker intercepts a message plus its encrypted hash function, generates
an unencrypted hash code from the message, and finally generates an alternate
message with the same hash code. The sixth property makes the hash function
resistant to an attack known as the birthday attack.

All the hash functions operate using the following general principles. The
input message is viewed as a sequence of n-bit blocks. The input is processed

27-30-5

E

K

M

H

| | D

K

M

H(M)

H

Compare

(a)

M

H

| |

K

KRa KUa

(b)

M

D

H

CompareK

Figure 11.5 Basic Uses of Hash Function (page 1 of 2)

E

M

H

| |

(c)

M

E D

H

Compare

EK[M || H(M)]

EK[H(M)]

EKRa[H(M)]

Destination BSource A

Figure 4: Basic use of a hash function

27-30-6

| |S

M

H

| | E

KRa KUa

E

K

D

K

M

D

H

Compare

(d)

M

H

| |

S
(e)

| |

M

H(M || S)

H(M || S)

H

Compare

M

H

| |

S
(f)

| |

E

K

| |S H

Compare

MD

K

Figure 11.5 Basic Uses of Hash Function (page 2 of 2)

EKRa[H(M)]

EK[M || EKRa[H(M)]]

EK[M || H(M || S)]

Destination BSource A

Figure 5: Basic use of a hash function (continued)

27-30-7

one block at a time in an iterative fashion to produce an n-bit hash function.
One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every
block. This can be expressed as follows:

Ci = bi1 ⊕ bi2 ⊕ . . . bim

where

Ci = ith bit of the hash code, 1 ≤ i ≤ n
m = number of n blocks in the input

bij = ith bit in jth block
⊕ = XOR operation

To improve matters, one typically performs a one-bit circular shift, or rotation,
on the hash value after each block is processed.

Digital signatures:

Message authentication protects two parties who exchange messages from any
third party. However, it does not protect the two parties against each other.
Digital signatures work best in public-key cryptography and an approach to
generate these signatures was discussed in Lecture 9 in the context of public-
key cryptography. I would also like to add here that the actual digital signature
algorithm (DSA) (which you used in Lab 4 in ssh with public key authentication)
is based on the difficulty of computing discrete logarithms (schemes originally
presented by ElGamal and Schnorr); I have a link to the DSA algorithm on
the course webpage. This is a competitor to the RSA public-key cryptosystem
we discussed in Lecture 9, which was based on the difficulty of factoring large
numbers. It is difficult/perhaps downright impossible to have digital signatures
in symmetric-key cryptography without third party intervention. So, along
with the distribution of the symmetric key, this remains one of the advantages
of public-key cryptography over symmetric-key cryptography.

IP Security:

There are two views about network security; the first is one known as end-to-end
(application layer security), where the two end-to-end processes (communicat-
ing parties) do the necessary encryption and decryption; any tampering done
in between these two processes including within either operating system can
then be detected. The trouble with this approach is that it requires changing
all the applications to make them security aware. In this view, the next best
approach is putting encryption between the application layer and the trans-
port layer, making it still end-to-end, but not requiring the applications to be
changed. Another trouble is that the IP headers in this approach cannot be
encrypted, else the intermediate routers will not be able to see the plain IP
headers for routing purposes. Thus, even if the eavesdropper cannot see the
actual data, he/she can perform a traffic analysis based on the values in the IP
header. The opposite view is that the network layer should do the necessary
encryption/decryption (link level security). in this case each vulnerable commu-
nications link is equipped on both ends with an encrypting device. Thus, traffic
over all communicating links is secured. Although this recourse requires a lot of

27-30-8

encryption devices in a large network (one between any pair of communicating
hosts), its value is clear; moreover one can encrypt the entire packet including
the IP header. One of the disadvantages is that message must be decrypted at
each router to enable it to route the packet; thus the actual packet is vulner-
able at each router. Several other implications of link encryption should also
be noted: for this strategy to be effective, all the potential links in a path from
source to destination must use link encryption. Each pair of routers/hosts that
share a link must also share an unique key (we are talking about a symmetric-key
cryptosystem here). Thus, many keys have to be distributed too. The general
consensus is that link-level encryption despite its greater overhead is the bet-
ter option. The end-to-end encryption and the link-level encryption schemes
are summarized in figure 6. The result is a design called IPsec (IP Security).

Packet-switching
networkPSN PSN

PSN

PSN

= end-to-end encryption device

= link encryption device

PSN = packet switching node

Figure 7.2 Encryption Across a Packet-Switching Network

Figure 6: Encryption across a packet switching network

27-30-9

The complete IPsec design is a framework for multiple services, algorithms and
granularities. The reason for multiple services is that not everyone wants to
pay the price for having all the services all the time. The major services are
secrecy, data integrity, and protection from replay attacks (where an intruder
replays an earlier conversation). All of these services are based on symmetric-
key cryptography because high performance is crucial. Moreover, the reason
for multiple algorithms is that the security algorithm (that is now thought be
secure) may be broken in the future. By making IPsec algorithm independent,
the framework can survive even if the algorithm does not. Finally, the reason
for having multiple granularities is to make it possible to protect a single TCP
connection, all traffic between a pair of hosts etc.

An important aspect of IPsec is that even though it is in the IP layer, it is
connection oriented. However, this is not surprising, since the security protocol
involves setting up a session key which is used for some period of time, so some
sort of connection needs to be set up. A connection in the context of IPsec is
called an SA (security association).

IPsec can be operated in two modes: a transport mode in which the IPsec
header is added just after the IP header. The protocol field in the original IP
header is changed to indicate that an IPsec header follows the normal IP header.
The IPsec header contains security information, primarily the SA identifier, a
new sequence number, and possibly an integrity check on the payload. In the
tunnel mode, the entire IP packet, header and all, is encapsulated in the body
of a new IP packet with a completely new IP header. Here is an example of
how the tunnel mode IPsec operates: Host A on a network generates an IP
packet with the destination address of host B on another network. This packet
is routed from the originating host to a firewall (secure router) at the boundary
of A’s network. The packet is transmitted in the clear until it reaches this
firewall. The firewall filters all outgoing packets to determine the need for IPsec
processing. If the packet from A to B requires IPsec, the firewall performs this
processing and encapsulates the resulting packet with an outer IP header. The
source IP address of this outer IP packet is this firewall, and the destination
address may be a firewall that forms the boundary to B’s local network. This
packet is now routed to B’s firewall, with the intermediate routers examining
only the outer IP header. At B’s firewall, the outer IP header is stripped off,
and the inner packet is delivered to B.

There are two protocols within IPsec: AH (Authentication Header) and ESP
(Encapsulating Security Payload). AH only provides authentication, whereas
ESP provides both authentication and encryption. The header employed in the
AH protocol (in transport mode) is shown in Figure 7. As shown in this figure,
the header consists of the following fields:

1. Next header: This stores the value the protocol field in the IP header
had, before this was replaced with 51 to indicate that an AH header fol-
lows. In most cases, this value is 6 to indicate the code for TCP.

2. Security parameters index: This basically contains the shared session
key used on the connection, besides other information.

3. Sequence number field: This numbers all the packets over the SA
connection. Every packet gets a unique sequence number, even retrans-
missions. The purpose of this is to prevent replay attacks.

27-30-10

IP header AH

32 Bits

Security parameters index

Next header Payload len (Reserved)

Sequence number

Authentication data (HMAC)

TCP header

Authenticated

Payload + padding

Figure 7: IPsec Authentication Header

27-30-11

4. Authentication data: This contains a variable length field that verifies
of the payload data. This signature is established by computing a hash
over the packet plus the shared key using the HMAC (Hashed Message
Authentication Code). One noteworthy feature of AH is that the integrity
covers some of the fields in the IP header, namely, those that do not change
as the packet moves from router to router (some entries like TTL change
and so these fields cannot be encrypted). Moreover, the source IP address
is included in the check making it impossible for an intruder to falsify the
origin of a packet.

The alternative IPsec header is the ESP. The ESP headers in transport and
tunnelling modes are shown in Figure 8. One difference between this and the
AH header is that HMAC integrity check comes after the payload. Moreover
this integrity check does not involve any of the fields in the IP header (in the
transport mode), and none of the fields in the new IP header (in the tunnelling
mode).

Email security:

We will just mention PGP (Pretty Good Privacy) out here. This was essentially
the brainchild of one person, Phil Zimmermann. PGP is a complete email
security package that provides privacy, authentication, digital signatures, and
compression. Furthermore, the complete package, including all source code, is
distributed free of charge via the internet. PGP encrypts data by using a block
cipher called IDEA (International Data Encryption Algorithm), which uses 128-
bit keys. Figure 9 describes PGP in operation for sending a message. Here, Alice
wants to send a plaintext message P to Bob in a secure way. Both Alice and
Bob have private (DA, DB) and public (EA, EB) RSA keys respectively. Alice
starts out by invoking the PGP program on her computer. PGP first hashes her
message P, using MD5 and then encrypts the resulting hash using her private
key RA. When Bob eventually gets the message, he can decrypt the hash using
Alice’s public key and verify that the hash is correct. The encrypted hash
and the original message are now concatenated into a single message, P1, and
compressed using the ZIP program. Let us call the output of this message P1.Z.
Next, PGP prompts Alice for some random imput. Both the content and the
typing speed are used to generate a 128-bit IDEA message key, KM . KM is
now used to encrypt P1.Z with IDEA in cipher feedback mode. In addition,
KM is encrypted using Bob’s public key, EB . These two components are then
concatenated and converted to base64. The resulting message then contains
only letters, digits and other ASCII characters, which means that it can be put
in the RFC 822 (email) body and be expected to arrive unmodified. When Bob
gets the message, he reverses the base64 encoding and decrypts the IDEA key
using the private RSA key. Using this key, he decrypts the message to get P1.Z.
After decompressing it, Bob separates the plaintext from the encrypted hash,
and decrypts the hash using Alice’s public key. If the plaintext hash agress
with his own MD5 computation, he knows that P is the correct message and
that it came from Alice (the hash ensures authentication while Alice’s digital
signature confirms that it indeed came from her). It is worth noting here that
PGP is a mixture of symmetric and public-key (RSA) cryptography. However,
RSA is used only in two places here: to encrypt the 128 bit MD5 hash and to
encrypt the 128-bit IDEA key. Since RSA has only to encrypt 256 bits in all

27-30-12

ESP
header

New IP
header

Old IP
header

TCP
header

Authenticated

Payload + padding(b) Authentication (HMAC)

ESP
header

IP
header

TCP
header Payload + padding(a) Authentication (HMAC)

Authenticated

Encrypted

Encrypted

Figure 8: (a) ESP in transport mode (b) ESP in tunnel mode

27-30-13

MD5 RSA Zip IDEA
Base

64

RSA

ASCII text to
the network

�
P1.Z

P
P1

Original
plaintext
message
from Alice

Concatenation of
P and the signed
hash of P

Concatenation of
P1.Z encrypted
with IDEA and K�

M
encrypted with EB

Alice's private
RSA key, DA

P1 compressed

Bob's public
RSA key, EB

KM : One-time message key for IDEA

 : Concatenation

KM

Figure 9: PGP in operation while sending a message

27-30-14

here, the encryption and the subsequent decryption can be performed quickly.
The length of the RSA keys depends on the amount of security required: a
commercial application uses an 512 bit RSA key while a military application
might typically use a 1024 bit key. Finally, the encryption is done over the header
and the body of the email message. Other encryption schemes for email include
PEM (Privacy Enhanced Mail) and S/MIME (Secure/MIME) (see Lecture 7 for
a discussion of the MIME).

Supplementary Reading:

1. Chapters 11 and 13 of Stallings [1] for a discussion on message authenti-
cation and digital signatures.

2. Chapter 16 of Stallings and Section 8.6.1 of Tanenbaum [2] for a discussion
of IP security.

3. Chapter 15 of Stallings and Section 8.8 of Tanenbaum for a discussion of
email security.

References

[1] W. Stallings, Cryptography and Network Security, 3rd edition, Prentice
Hall, 2003.

[2] A.S. Tanenbaum, Computer Networks, 4th edition, Prentice Hall, 2003.

27-30-15

