SFWR 4C03: Computer Networks & Computer Security

Lecturer: Kartik Krishnan

Mar 22-25, 2004

Lecture 31-33

1 Kerberos

Kerberos is an authentication service developed as part of Project Athena at
MIT. Kerberos addresses the following problem: Assume a distributed environ-
ment in which users at workstations wish to access services on servers distributed
throughout the network. We would like the servers to be able to restrict access
to authorized users and to be able to authenticate requests for service.

Kerberos authentication is based entirely on the knowledge of passwords
that are stored on the Kerberos Server. Unlike UNIX passwords, which are en-
crypted with a one-way algorithm that cannot be reversed, Kerberos passwords
are stored on the server encrypted with a conventional encryption algorithm
(typically DES), so that they can decrypted by the server when needed. A user
proves his/her identity to the Kerberos server by demonstrating knowledge of
the key.

An overview of Kerberos is given in Figure 1. We describe the steps in more
detail below.

1. Logging into a UNIX workstation that is using Kerberos looks the same to
a user (Kartik) as logging into a regular UNIX workstation. Sitting at the
workstation, the user sees the traditional login: and password: prompts.
In Kerberos 4 as soon as Kartik types his username, the workstation sends
a message to the Kerberos authentication server. This message contains
Kartik’s username and indicates that Kartik is trying to login.

2. The Kerberos server checks its database and, if Kartik is a valid user, sends
back a ticket granting ticket that is encrypted using Kartik’s password.
The ticket granting ticket contains the following two pieces of information:
a session key K, and a ticket for the Kerberos ticket granting ticket T34,
encrypted with both the session key and the ticket granting service’s key
Kt957 i.e., EthS EKSES {Ttgs}.

3. The workstation then asks Kartik to type in his password, and attempts to
decrypt the encrypted ticket using the password that Kartik has supplied.
If this is successful then the workstation forgets about Kartik’s password
and uses the ticket granting ticket exclusively. If decryption fails, the
workstation gives Kartik another chance to type the right password.

4. Now, if Kartik wanted to access his files on the file server, the system
software on the workstation Kartik is currently on, contacts the ticket

31-33-1




once per
user logon
session

1. User logs on to
workstation and
requests service on host.
ice-
st serV!
reQ“e‘ 1 kel

2. AS verifies user's access right in
database, creates ticket-granting ticket
and session key. Results are encrypted
using key derived from user's password.

Kerberos

Authenticatio;l

Server (AS)

y

Ticket-
granting

|1
P
|_—1 Server (TGS)

3. Workstation prompts
user for password and
uses password to decrypt
incoming message, then
sends ticket and
authenticator that
contains user's name,
network address, and
time to TGS.

once per

. service session
5. Workstation sends

ticket and authenticator
to server.

4. TGS decrypts ticket and
authenticator, verifies request,
then creates ticket for requested

SErver.

6. Server verifies that
ticket and authenticator
match, then grants access
to service. If mutual
authentication is
required, server returns
an authenticator.

Figure 14.1 Overview of Kerberos

Figure 1: An overview of Kerberos

31-33-2



granting service, and asks for a ticket for the file server. This request is
encrypted using the session key Kg.s. The ticket granting service sends
Kartik back another ticket, encrypted with the file server’s password, that
Kartik’s workstation can present to the file server service to request files.
The contained ticket also contains Kartik’s authenticated username, the
expiration time, and the internet address of Kartik’s workstation. Kartik’s
workstation presents this ticket to the file server, which decrypts the ticket
using its own password, and grants Kartik access to the file system.

A few points about Kerberos are now in order:

1. Passwords are stored only on the Kerberos server, not on the individual
workstations. The user’s password is never transmitted on the network—
encrypted or otherwise. The Kerberos authentication server is able to
authenticate the user’s identity because the user knows his own password.

2. The ticket granting service was able to establish Kartik’s identity because
Kartik’s file service ticket request was encrypted using the session key
Kes, moreover this message included the ticket granting ticket encrypted
with Kygs; the only way Kartik could have obtained this information is by
decrypting the original ticket granting ticket obtained from the Kerberos
authentication server: to do this Kartik would need to know his own
password.

3. The file server service was happy with Kartik’s identity since the ticket
that it received from Kartik’s workstation is encrypted with its own key;
this ticket also includes Kartik’s username and the IP address of his ma-
chine (information that could only be put there by the ticket granting
service), and this is good enough for the file server (since the ticket grant-
ing service is sure of Kartik’s identity).

2 SSL: The Secure Sockets Layer

The world wide web is used for more than just transmitting and navigating
static user webpages. Before long, various companies got the idea for using it
for financial transactions, such as purchasing merchandise by credit card, on-
line banking, and electronic stock trading. These applications created a demand
for secure connections. In 1995, Netscape Communications Corp, introduced a
security package called SSL (Secure Sockets Layer) to meet this demand.

SSL is designed to make use of TCP to provide reliable end-to-end secure
connection. SSL consists of two subprotocols, one for establishing a secure con-
nection (SSH Handshake Protocol) and one for using it (SSL Record Protocol).
Before we proceed, it is useful to distinguish between a connection and a session.
A session is an association between a client and a server. Sessions are created
by the handshake protocol. A session involves the exchange of cryptographic
security parameters, which can be used over multiple connections. Sessions are
used to avoid the expensive negotiation of new security parameters for each
connection. Also, a session consists of multiple connections, each of which uses
the record protocol.

We will first discuss the handshake protocol which is used at the beginning
of a new session. This protocol is shown in Figure 2. Let us define the two
communicating parties as Alice (client) and Bob (server). The protocol begins

31-33-3



Alice

1 .
4{ SSL version, Preferences, R )—>

5
—{ Eg (Premaster key) }—»

2
<—{ SSL version, Choices, Rg }—
3 N
X.509 certificate chain
4
<—( Server done }7

s Change cipher

7 -
Finished

8
Change cipher

9

Finished

Bob

Figure 2: The SSL handshake protocol

31-33-4




with message 1 when Alice sends a request to Bob to establish a connection.
The request also specifies the SSL version Alice has and her preferences with
respect to compression and cryptographic algorithms. It also contains a nonce
(a random number ) R4, to be used later.

In message 2, Bob makes a choice among the various algorithms that Alice
can support and sends his own nonce, Rg. Then in message 3, he sends a
certificate containing his public key (in SSL it is always important that the server
authenticate itself to the client; for example when you buying a book online at
amazon.ca this will ensure that you are actually talking to the amazon.ca web
server and not to some eavesdropper who masquerades as amazon.ca); moreover
just showing your public key to the client is not sufficient since anyone can
pull Bob’s public key from his webpage (say). So Bob’s public key needs to
be certified by some well known authority. In this case, Bob’s public key is
encrypted using the authority’s private key; we will assume Alice has access
to the public key of the authority and uses this to decrypt Bob’s public key.
Now what if Alice does not have the authority’s public key; in this case Bob
sends Alice a chain of X.509 certificates that can be followed back to one. All
browsers, including Alice’s, come preloaded with about 100 public keys of well
known authorities, so if Bob can establish a chain anchored at one of these,
Alice will be able to verify Bob’s public key. Thus, if Alice has securely obtained
the public key of authority X, Bob has the public key of authority X5, and
authorities X7 and X5 have secured exchanged their public keys, the following
procedure will enable Alice to obtain Bob’s public key.

1. Alice obtains from her web browser the certificate of Xo signed by Xj.
Since, Alice knows X; public key, she can obtain X5’s public key from
this certificate.

2. Alice then uses the public key of X5 on Bob’s certificate signed by Xs
to obtain Bob’s public key; she can also trust this public key since the
authorities X; and X9 are above the law :)

3. The process need to be limited to two authorities; in fact an arbitarily
long path of authorities can be followed to produce a chain as descrbed
above.

At this point, Bob may send other messages to Alice (such as a request for
Alice’s public-key certificate; normally servers do not bother to authenticate
clients; Alice may well authenticate herself later when she gives her credit card
details). When Bob is done, he sends message 4 to tell Alice that it is now her
turn.

Alice responds by choosing a random 384 bit premaster key and sending it
to Bob encrypted with his trusted public key (message 5). The actual session
key used for encrypting data is derived from the premaster key combined with
both the nonces in a complex way. After message 5 has been received, both
Alice and Bob are able to compute the session key.

Alice then computes a hash on a concatenation of the session key and all the
handshake messages that have been exchanged so far, and encrypts this with
her private key. The data is sent as message 6. This ensures that none of the
messages have been computed so far; it also ensures that Bob has computed the
correct session key. Alice then sends message 7 indicating that she is finished
with the establishment protocol. Bob then acknowledges her (messages 8 and
9).

31-33-5



Thus, we see that the SSL handshake protocol supports multiple crypto-
graphic algorithms. The strongest one uses triple DES with three separate keys
for encryption and SHA-1 for message integrity. This combination is relatively
slow, so it is mostly used for banking and other applications where the highest
security is required. For ordinary e-commerce applications, RC4 (a symmetric-
key cryptosystem) is used with a 128 bit key for encryption and MD5 is used
for message authentication. In fact, RC4 takes the 128 bit key as a seed and
expands it to a much larger number for internal use. The keystream is XORed
with the plaintext to produce a classical stream cipher. The export versions
also use RC4 with 128-bit keys, but 88 of the bits are actually made public to
make the cipher easy to break (all this so that Netscape Communications could
actually obtain an export license :)

For the actual transport, a second subprotocol called the SSL record protocol
is used. This protocol is illustrated in Figure 3. Messages from the browser are
first broken into units of upto 16 KB. If compression is enabled, each unit is
then separately compressed. After that, a secret key derived from the two
nonces and premaster key in the handshake protocol is concatenated with the
compressed text and the result hashed with the agreed-on hashing algorithm
(usually MD5). This hash is then appended to each fragment as the MAC. The
compressed fragment plus MAC is then encrypted with the agreed-on symmetric
encryption algorithm. Finally, a fragment header is added and the fragment is
transmitted over the TCP connection.

Supplementary Reading:

1. Chapters 14 of Stallings [1], especially Section 14.1, for a discussion on
Kerberos. There is also a nice discussion in Chapter 19 of Garfinkel &
Spafford [2].

2. Chapter 17, especially Section 17.2, of Stallings and Section 8.9 of Tanen-
baum [3] for a discussion of web security and SSL.

References

[1] W. STALLINGS, Cryptography and Network Security, 3rd edition, Prentice
Hall, 2003.

[2] S. GARFINKEL AND G. SPAFFORD, Practical Uniz & Internet Security. 2nd
edition, O'Reilly & Associates, 1996.

[3] A.S. TANENBAUM, Computer Networks, 4th edition, Prentice Hall, 2003.

31-33-6



‘ Message from browser

Compression

Message
authentication
code

y

MAC added

Encryption

Header added

TH
e

Figure 3: Data transmission using SSL

31-33-7



