
Filesystem Security

1

General Principles

• Files and folders are managed
by the operating system

• Applications, including shells,
access files through an API

• Access control entry (ACE)
– Allow/deny a certain type of

access to a file/folder by
user/group

• Access control list (ACL)
– Collection of ACEs for a

file/folder

• A file handle provides an
opaque identifier for a
file/folder

• File operations
– Open file: returns file handle

– Read/write/execute file
– Close file: invalidates file

handle

• Hierarchical file organization
– Tree (Windows)
– DAG (Linux)

2

Discretionary Access Control (DAC)

• Users can protect what they own
– The owner may grant access to others

– The owner may define the type of access
(read/write/execute) given to others

• DAC is the standard model used in operating
systems

• Mandatory Access Control (MAC)
– Alternative model not covered in this lecture

– Multiple levels of security for users and documents

– Read down and write up principles

3

Closed vs. Open Policy

Closed policy
– Also called “default secure”

• Give Tom read access to “foo”

• Give Bob r/w access to “bar

• Tom: I would like to read “foo”

– Access allowed

• Tom: I would like to read “bar”

– Access denied

Open Policy
• Deny Tom read access to “foo”

• Deny Bob r/w access to “bar”

• Tom: I would like to read “foo”

– Access denied

• Tom: I would like to read “bar”

– Access allowed

4

Closed Policy with Negative
Authorizations and Deny Priority

• Give Tom r/w access to “bar”

• Deny Tom write access to “bar”
• Tom: I would like to read “bar”

– Access allowed

• Tom: I would like to write “bar”
– Access denied

• Policy is used by Windows to manage access control
to the file system

5

Access Control Entries and Lists

• An Access Control List (ACL) for a resource (e.g., a file or
folder) is a sorted list of zero or more Access Control
Entries (ACEs)

• An ACE refers specifies that a certain set of accesses (e.g.,
read, execute and write) to the resources is allowed or
denied for a user or group

• Examples of ACEs for folder “Bob’s CS167 Grades”
– Bob; Read; Allow
– TAs; Read; Allow
– TWD; Read, Write; Allow

– Bob; Write; Deny
– TAs; Write; Allow

6

Linux vs. Windows

• Linux
– Allow-only ACEs
– Access to file depends on

ACL of file and of all its
ancestor folders

– Start at root of file system
– Traverse path of folders
– Each folder must have

execute (cd) permission
– Different paths to same file

not equivalent
– File’s ACL must allow

requested access

• Windows
– Allow and deny ACEs
– By default, deny ACEs

precede allow ones
– Access to file depends only

on file’s ACL
– ACLs of ancestors ignored

when access is requested
– Permissions set on a folder

usually propagated to
descendants (inheritance)

– System keeps track of
inherited ACE’s

7

Linux File Access Control

• File Access Control for:
– Files

– Directories

– Therefore…
• \dev\ : devices

• \mnt\ : mounted file systems

• What else? Sockets, pipes, symbolic links…

8

Linux File System
• Tree of directories (folders)

• Each directory has links to zero or more files or directories

• Hard link
– From a directory to a file

– The same file can have hard links from multiple directories, each with its own
filename, but all sharing owner, group, and permissions

– File deleted when no more hard links to it

• Symbolic link (symlink)

– From a directory to a target file or directory

– Stores path to target, which is traversed for each access

– The same file or directory can have multiple symlinks to it

– Removal of symlink does not affect target

– Removal of target invalidates (but not removes) symlinks to it

– Analogue of Windows shortcut or Mac OS alias
9

Unix Permissions

• Standard for all UNIXes
• Every file is owned by a user and has an associated

group
• Permissions often displayed in compact 10-character

notation
• To see permissions, use ls –l

jk@sphere:~/test$ ls –l
total 0
-rw-r----- 1 jk ugrad 0 2005-10-13 07:18 file1
-rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2

10

Permissions Examples (Regular Files)

11

read/write/execute to everyone-rwxrwxrwx

read-only to everyone, including
owner

-r--r--r--

read/write/execute for owner,
forbidden to everyone else

-rwx------

read/write for owner, read-only for
group, forbidden to others

-rw-r-----

read/write for owner, read-only for
everyone else

-rw-r—r--

Permissions for Directories

• Permissions bits interpreted differently for directories

• Read bit allows listing names of files in directory, but not their
properties like size and permissions

• Write bit allows creating and deleting files within the directory

• Execute bit allows entering the directory and getting
properties of files in the directory

• Lines for directories in ls –l output begin with d, as below:

jk@sphere:~/test$ ls –l
Total 4
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dir1
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 file1

12

Permissions Examples (Directories)

13

full access to everyone-rwxrwxrwx

full access to owner, group can
access known filenames in
directory, forbidden to others

drwx--x---

full access to owner and group,
forbidden to others

drwxrwx---

all can enter and list the directory,
only owner can add/delete files

drwxr-xr-x

File Sharing Challenge
• Creating and modifying groups requires root

• Given a directory with permissions drwx------x and a file in it
– Give permission to write the file to user1, user2, user3, … without

creating a new group
– Selectively revoke a user

• Solution 1
– Give file write permission for everyone
– Create different random hard links: user1-23421, user2-56784, …

• Problem! Selectively removing access: hard link can be copied

• Solution 2
– Create random symbolic links

• Problem! Symbolic link tells where it points

14

Working Graphically with Permissions

• Several Linux GUIs exist for
displaying and changing
permissions

• In KDE’s file manager
Konqueror, right-click on a file
and choose Properties, and
click on the Permissions tab:

• Changes can be made here
(more about changes later)

15

Special Permission Bits

• Three other permission bits exist
– Set-user-ID (“suid” or “setuid”) bit
– Set-group-ID (“sgid” or “setgid”) bit
– Sticky bit

16

Set-user-ID

• Set-user-ID (“suid” or “setuid”) bit
– On executable files, causes the program to run as

file owner regardless of who runs it
– Ignored for everything else
– In 10-character display, replaces the 4th character

(x or -) with s (or S if not also executable)
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid
-rwSr--r--: setuid, but not executable - not useful

17

Set-group-ID

• Set-group-ID (“sgid” or “setgid”) bit
– On executable files, causes the program to run with the file’s group,

regardless of whether the user who runs it is in that group

– On directories, causes files created within the directory to have the
same group as the directory, useful for directories shared by multiple
users with different default groups

– Ignored for everything else

– In 10-character display, replaces 7th character (x or -) with s (or S if
not also executable)

-rwxr-sr-x: setgid file, executable by all

drwxrwsr-x: setgid directory; files within will have group of directory

-rw-r-Sr--: setgid file, but not executable - not useful

18

Sticky Bit

• On directories, prevents users from deleting or renaming files
they do not own

• Ignored for everything else

• In 10-character display, replaces 10th character (x or -) with t
(or T if not also executable)

drwxrwxrwt: sticky bit set, full access for everyone
drwxrwx--T: sticky bit set, full access by user/group
drwxr--r-T: sticky, full owner access, others can read (useless)

19

Working Graphically with Special Bits

• Special permission bits can also be displayed and changed
through a GUI

• In Konqueror’s Permissions window, click Advanced
Permissions:

• Changes can be made here (more about changes later)

20

Root

• “root” account is a super-user account, like
Administrator on Windows

• Multiple roots possible

• File permissions do not restrict root

• This is dangerous, but necessary, and OK with good
practices

21

Becoming Root

• su

– Changes home directory, PATH, and shell to that of root, but doesn’t
touch most of environment and doesn’t run login scripts

• su -
– Logs in as root just as if root had done so normally

• sudo <command>
– Run just one command as root

• su [-] <user>

– Become another non-root user

– Root does not require to enter password

22

Changing Permissions

• Permissions are changed with chmod or through a GUI like
Konqueror

• Only the file owner or root can change permissions

• If a user owns a file, the user can use chgrp to set its group to
any group of which the user is a member

• root can change file ownership with chown (and can
optionally change group in the same command)

• chown, chmod, and chgrp can take the -R option to recur
through subdirectories

23

Examples of Changing Permissions

24

Sets the setuid bit on file1.
(Doesn’t change execute bit.)

chmod u+s file1

Sets file1’s group to testgrp, if the
user is a member of that group

chgrp testgrp file1

Adds group read/write permission to
dir1 and everything within it, and group
execute permission on files or
directories where someone has execute
permission

chmod -R g=rwX dir1

Adds group write permission to
file1 and file2, denying all access
to others

chmod g+w,o-rwx file1 file2

Changes ownership of dir1 and
everything within it to root

chown -R root dir1

Octal Notation

• Previous slide’s syntax is nice for simple cases, but
bad for complex changes
– Alternative is octal notation, i.e., three or four digits from 0

to 7

• Digits from left (most significant) to right(least
significant):
[special bits][user bits][group bits][other bits]

• Special bit digit =
(4 if setuid) + (2 if setgid) + (1 if sticky)

• All other digits =
(4 if readable) + (2 if writable) + (1 if executable)

25

Octal Notation Examples

26

read/write/execute to everyone
(dangerous!)

777 or 0777

same as 777, plus sticky bit1777

same as 775, plus setgid (useful for
directories)

2775

read/write for owner, read-only for group,
forbidden to others

640 or 0640

read/write/execute for owner and group,
read/execute for others

775 or 0775

read/write for owner, read-only for
everyone else

644 or 0644

Limitations of Unix Permissions

• Unix permissions are not perfect
– Groups are restrictive
– Limitations on file creation

• Linux optionally uses POSIX ACLs
– Builds on top of traditional Unix permissions
– Several users and groups can be named in ACLs, each with

different permissions
– Allows for finer-grained access control

• Each ACL is of the form type:[name]:rwx
– Setuid, setgid, and sticky bits are outside the ACL system

27

Minimal ACLs

• In a file with minimal ACLs, name does not appear, and the
ACLs with type “user” and “group” correspond to Unix user
and group permissions, respectively.
– When name is omitted from a “user” type ACL entry, it applies to the

file owner.

28

ACL Commands

• ACLs are read with the getfacl command and set with the
setfacl command.

• Changing the ACLs corresponding to Unix permissions shows
up in ls -l output, and changing the Unix permissions with
chmod changes those ACLs.

• Example of getfacl:

29

jimmy@techhouse:~/test$ ls -l
total 4
drwxr-x--- 2 jimmy jimmy 4096 2005-12-02 04:13 dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
group::r-x
other::---

More ACL Command Examples

30

jimmy@techhouse:~/test$ setfacl -m group::rwx dir
jimmy@techhouse:~/test$ ls -l
total 4
drwxrwx--- 2 jimmy jimmy 4096 2005-12-02 04:13 dir

jimmy@techhouse:~/test$ chmod 755 dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
group::r-x
other::r-x

Extended ACLs

• ACLs that say more than Unix permissions are extended ACLs
– Specific users and groups can be named and given permissions via

ACLs, which fall under the group class (even for for ACLs naming users
and not groups)

• With extended ACLs, mapping to and from Unix permissions is
a bit complicated.

• User and other classes map directly to the corresponding Unix
permission bits

• Group class contains named users and groups as well as
owning group permissions. How to map?

31

Mask-type ACLs

• Unix group permissions now map to an ACL of type “mask”, which is an
upper bound on permissions for all group class ACLs.

• All group class ACLs are logically and-ed with the mask before taking
effect
– rw-—xrw- & r-x—x--- = r----x--

• The ACL of type “group” with no name still refers to the Unix owning
group

• Mask ACLs are created automatically with the necessary bits such that
they do not restrict the other ACLs at all, but this can be changed

32

Extended ACL Example

33

jimmy@techhouse:~/test$ ls -l
total 4
drwxr-xr-x 2 jimmy jimmy 4096 2005-12-02 04:13 dir
jimmy@techhouse:~/test$ setfacl -m user:joe:rwx dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::r-x

jimmy@techhouse:~/test$ ls -l
total 8
drwxrwxr-x+ 2 jimmy jimmy 4096 2005-12-02 04:13 dir

Extended ACL Example Explained

• The preceding slide grants the named user joe read, write, and
execute access to dir.
– dir now has extended rather than minimal ACLs.

• The mask is set to rwx, the union of the two group class ACLs (named
user joe and the owning group).

• In ls -l output, the group permission bits show the mask, not the
owning group ACL
– Effective owning group permissions are the logical and of the owning

group ACL and the mask, which still equals r-x.
– This could reduce the effective owning group permissions if the mask is

changed to be more restrictive.

• The + in the ls -l output after the permission bits indicates that
there are extended ACLs, which can be viewed with getfacl.

34

Default ACLs

• The kind of ACLs we've mentioned so far are access ACLs.

• A directory can have an additional set of ACLs, called default
ACLs, which are inherited by files and subdirectories created
within that directory.
– Subdirectories inherit the parent directory's default ACLs as

both their default and their access ACLs.

– Files inherit the parent directory's default ACLs only as their
access ACLs, since they have no default ACLs.

• The inherited permissions for the user, group, and other classes
are logically and-ed with the traditional Unix permissions
specified to the file creation procedure.

35

Default ACL Example

36

jimmy@techhouse:~/test$ setfacl -d -m group:webmaster:rwx
dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::r-x
default:user::rwx
default:group::r-x
default:group:webmaster:rwx
default:mask::rwx
default:other::r-x

Note how this starts the default ACLs out as equal to the existing
access ACLs plus the specified changes.

Default ACL Example Continued

37

jimmy@techhouse:~/test$ mkdir dir/subdir
jimmy@techhouse:~/test$ getfacl dir/subdir
file: dir/subdir
owner: jimmy
group: jimmy
user::rwx
group::r-x
group:webmaster:rwx
mask::rwx
other::r-x
default:user::rwx
default:group::r-x
default:group:webmaster:rwx
default:mask::rwx
default:other::r-x

The default ACLs from the parent directory are both the access and default
ACLs for this directory. Group webmaster has full access.

Default ACL Example Continued

38

jimmy@techhouse:~/test$ touch dir/file
jimmy@techhouse:~/test$ ls -l dir/file
-rw-rw-r--+ 1 jimmy jimmy 0 2005-12-02 11:36 dir/file
jimmy@techhouse:~/test$ getfacl dir/file
file: dir/file
owner: jimmy
group: jimmy
user::rw-
group::r-x #effective:r--
group:webmaster:rwx #effective:rw-
mask::rw-
other::r--

The default ACLs from the parent directory are the basis for the access
ACLs on this file, but since touch creates files without any execute bit set,
the user and other classes, and the group class as well via the mask ACL,
have their execute bits removed to match.

NTFS Permissions

39

NTFS PartitionACL

User 1

User 2

Read

Group 1

User 1

Read

Group 1

Full Control

Full Control

d
ACE

Control

ACE

Basic NTFS Permissions

40

Read Open files and subfolders Open files

List Folder Contents

Read and Execute

Write

Modify

Full Control

NTFS Permission Folders Files

Not applicable

List contents of folder, traverse
folder to open subfolders

Create subfolders and add files

Not applicable

Open files, execute
programs

All the above + delete

All the above +
change permissions
and take ownership,
delete subfolders

All the above

Modify files

All the above +
change permissions
and take ownership

Group A

User 1

Multiple NTFS permissions

41

� NTFS permissions are cumulative

� File permissions override folder permissions

� Deny overrides Allow

File1

File2

Group B

Group A
p

Write denied

User 1

User 1

Read

Read/Write Folder A

�

�

��

Group Bp

Write

NTFS: permission inheritance

42

Folder A

Access allowed for File 1

Access denied for File 1

Block of Inheritance

Permission Inheritance

File1

A ll d f Fil 1

Read/Write

Read/Write Folder A

File1

NTFS File Permissions
• Explicit: set by the owner for each user/group.

• Inherited: dynamically inherited from the explicit
permissions of ancestor folders.

• Effective: obtained by combining the explicit and
inherited permission.

43

Rules

inherited

explicit

effectiveDetermining effective permissions:

� By default, a user/group has no
privileges.

� Explicit permissions override
conflicting inherited permissions.

� Denied permissions override
conflicting allowed permissions.

Access Control Algorithm
• The DACL of a file or folder is a sorted list of ACEs

– Local ACEs precede inherited ACEs

– ACEs inherited from folder F precede those inherited from parent of F

– Among those with same source, Deny ACEs precede Allow ACEs

• Algorithm for granting access request (e.g., read and execute):

– ACEs in the DACL are examined in order

– Does the ACE refer to the user or a group containing the user?

– If so, do any of the accesses in the ACE match those of the request?

– If so, what type of ACE is it?
• Deny: return ACCESS_DENIED

• Allow: grant the specified accesses and if there are no remaining accesses to grant,
return ACCESS_ALLOWED

– If we reach the end of the DACL and there are remaining requested accesses
that have not been granted yet, return ACCESS_DENIED

44

Example

45

� Customers Group
Write Folder1

� Marketing Group
Read Folder1

� Customers Group
Read Folder1

� Marketing Group
Write Folder2

� Customers Group
Modify Folder1

� File2 should only be
accessible to
Marketing Group, and
only for read access

File2

Folder1

Folder2

File1

FFFFF

User1

NTFS

RRR
Customers Group

Marketing Group

NTFS move vs. copy in same volume

• If you move a file or a folder
inside the same volume your
permission will be the same
of the source folder

• If you copy a file or a folder
inside the same volume your
permission will be the same
of the destination folder

46

NTFS E:\

CopyMove

NTFS move vs. copy across volumes

• If you copy or move a file or a folder on different volumes
your permission will be the same of the destination folder

47

NTFS D:\

NTFS E:\NTFS C:\ Copy

Move

Setting File Permissions in Win XP

48

� NTFS permissions in

Windows XP Pro are disabled

by default.

� Using Folder Options…

from Tools menu inside

Windows Explorer is

possible to activate NTFS

permission in windows by

unchecking Use simple file

sharing

Windows Tools
• Access control management

tools provide detailed
information and controls,
across multiple dialogs.

• Focus on single file/folders.

• It is challenging for an
inexperienced user, or a
system administrator dealing
with very large file structures,
to gain a global view of
permissions within the file
system

49

Treemap Access Control Evaluator (TrACE)

50

Alexander Heitzmann, Bernardo Palazzi, Charalampos
Papamanthou, Roberto Tamassia. Effective Visualization of
File System Access Control, VizSEC 2008

Sponsors:

TrACE Highlights

• At a glance, determine the
explicit, inherited, and
effective permissions of
files and folders.

• Understand access control
relationships between
files and their ancestors

• Quickly evaluate large
directory structures and
find problem areas

• Layout based on treemaps

51

•

•

•

•

What is a Treemap?
• A visualization method to display large hierarchical data

structures (trees)

• Layout based on nested rectangles.

• Treemaps were introduced by Ben Shneiderman in “Tree
visualization with tree-maps: 2-d space-filling approach”;
TOG 1991

52

A

B C
F

E
D

53

54

Acknowledgment

• Much of these POSIX ACL slides are adapted
(and some pictures are taken) from Andreas
Grünbacher’s paper POSIX Access Control Lists
on Linux, available online at:

http://www.suse.de/~agruen/acl/linux-acls/

55

