
I N T R O D U C T I O N  T O  W I R E S H A R K

As mentioned in Chapter 1, several 
packet-sniffing applications are available 

for performing network analysis, but we’ll 
use Wireshark in this book. This chapter 

introduces Wireshark.

A Brief History of Wireshark

Wireshark has a very rich history. Gerald Combs, a computer science gradu-
ate of the University of Missouri at Kansas City, originally developed it out of 
necessity. The first version of Combs’s application, called Ethereal, was released 
in 1998 under the GNU Public License (GPL).

Eight years after releasing Ethereal, Combs left his job to pursue other 
career opportunities. Unfortunately, his employer at that time had full rights 
to the Ethereal trademarks, and Combs was unable to reach an agreement 
that would allow him to control the Ethereal “brand.” Instead, Combs and the 
rest of the development team rebranded the project as Wireshark in mid-2006.



36   Chapter 3

Wireshark has grown dramatically in popularity, and its collaborative 
development team now boasts more than 500 contributors. The program as 
it exists under the Ethereal name is no longer being developed.

The Benefits of Wireshark

Wireshark offers several benefits that make it appealing for everyday use. It is 
aimed at both the journeyman and the expert packet analyst, and offers a 
variety of features to entice each. Let’s examine Wireshark according to the 
criteria defined in Chapter 1 for selecting a packet-sniffing tool.

Supported protocols Wireshark excels in the number of protocols that 
it supports—more than 850 as of this writing. These range from com-
mon ones like IP and DHCP to more advanced proprietary protocols like 
AppleTalk and BitTorrent. And because Wireshark is developed under 
an open source model, new protocol support is added with each update.

NOTE In the unlikely case that Wireshark doesn’t support a protocol you need, you can code 

that support yourself and submit your code to the Wireshark developers for inclusion in 

the application (if your code is accepted, of course).

User-friendliness The Wireshark interface is one of the easiest to 
understand of any packet-sniffing application. It is GUI-based, with very 
clearly written context menus and a straightforward layout. It also provides 
several features designed to enhance usability, such as protocol-based 
color coding and detailed graphical representations of raw data. Unlike 
some of the more complicated command-line-driven alternatives, like 
tcpdump, the Wireshark GUI is great for those who are just entering the 
world of packet analysis.

Cost Since it is open source, Wireshark’s pricing can’t be beat: Wire-
shark is released as free software under the GPL. You can download and 
use Wireshark for any purpose, whether personal or commercial.

NOTE Although Wireshark may be free, some people have made the mistake of paying for it by 

accident. If you search for packet sniffers on eBay, you may be surprised by how many 

people would love to sell you a “professional enterprise license” for Wireshark for the 

low, low price of $39.95. Of course, this is a farce, but if you decide you really want to 

buy it, give me a call, and we can talk about some oceanfront property in Kentucky I 

have for sale!

Program support A software package’s level of support can make or 
break it. When dealing with freely distributed software such as Wireshark, 
there may not be any formal support, which is why the open source com-
munity often relies on its user base to provide support. Luckily for us, the 
Wireshark community is one of the most active of any open source project. 



In t roduct ion to Wireshark   37

The Wireshark web page links directly to several forms of support, includ-
ing online documentation, a support and development wiki, FAQs, and 
a place to sign up for the Wireshark mailing list, which is monitored by 
most of the program’s top developers. Paid support for Wireshark is also 
available from CACE Technologies through its SharkNet program.

Operating system support Wireshark supports all major modern oper-
ating systems, including Windows, Mac OS X, and Linux-based platforms. 
You can view a complete list of supported operating systems on the Wire-
shark home page.

Installing Wireshark

The Wireshark installation process is surprisingly simple. However, before you 
install Wireshark, make sure that your system meets the following requirements:

� 400 MHz processor or faster

� 128MB RAM

� At least 75MB of available storage space

� NIC that supports promiscuous mode

� WinPcap capture driver

The WinPcap capture driver is the Windows implementation of the pcap 
packet-capturing application programming interface (API). Simply put, this 
driver interacts with your operating system to capture raw packet data, apply 
filters, and switch the NIC in and out of promiscuous mode.

Although you can download WinPcap separately (from http://www�
.winpcap.org/), it is typically better to install WinPcap from the Wireshark 
installation package, because the included version of WinPcap has been 
tested to work with Wireshark.

Installing on Microsoft Windows Systems

The first step when installing Wireshark under Windows is to obtain the 
latest installation build from the official Wireshark web page, http://www�
.wireshark.org/. Navigate to the Downloads section on the website and choose 
a mirror. Once you’ve downloaded the package, follow these steps:

1. Double-click the .exe file to begin installation, and then click Next in the 
introductory window.

2. Read the licensing agreement, and then click I Agree if you agree.

3. Select the components of Wireshark you wish to install, as shown in 
Figure 3-1. For our purposes, you can accept the defaults by clicking Next.



38   Chapter 3

Figure 3-1: Choosing the Wireshark components you wish to install

4. Click Next in the Additional Tasks window.

5. Select the location where you wish to install Wireshark, and then click Next.

6. When the dialog asks whether you want to install WinPcap, make sure 
the Install WinPcap box is checked, as shown in Figure 3-2, and then 
click Install. The installation process should begin.

Figure 3-2: Selecting the option to install the WinPcap driver

7. About halfway through the Wireshark installation, the WinPcap installa-
tion should start. When it does, click Next in the introductory window, 
read the licensing agreement, and then click I Agree.



In t roduct ion to Wireshark   39

8. WinPcap should install on your computer. After this installation is com-
plete, click Finish.

9. Wireshark should complete its installation. When it’s finished, click Next.

10. In the installation confirmation window, click Finish.

Installing on Linux Systems

The first step when installing Wireshark on a Linux system is to download 
the appropriate installation package. Not every version of Linux is supported, 
so don’t be surprised if your specific distribution doesn’t have its own install 
package.

Typically, for system-wide software, root access is a requirement. How-
ever, local software installations compiled from source can usually be 
installed without root access.

RPM-based Systems

For RPM-based distributions, such as Red Hat Linux, download the appropri-
ate installation package from the Wireshark web page. Then open a console 
window and enter the following (substituting the filename of your downloaded 
package as appropriate):

rpm -ivh wireshark-0.99.3.i386.rpm

If any dependencies are missing, install them and repeat the Wireshark 
installation.

DEB-based Systems

On a DEB-based distribution such as Debian or Ubuntu, you can install 
Wireshark from the system repositories. Open a console window and type 
the following:

apt-get install wireshark

Compiling from Source

If your Linux distribution doesn’t use an automated package management 
software, the most effective way to install Wireshark is to compile it from 
source. To do this, complete the following steps:

1. Download the source package from the Wireshark web page.

2. Extract the archive by typing the following (substituting the filename of 
your downloaded package as appropriate):

tar –jxvf wireshark-1.2.2.tar.bz2

3. Change into the newly created directory where the files were extracted.



40   Chapter 3

4. As a root-level user, configure the source so that it will build correctly for 
your distribution of Linux by using the command ./configure. If you wish 
to deviate from the default installation options, you can specify those 
options at this point in the installation. If any dependencies are missing, 
you will most likely receive an error. If installation is successful, you 
should see a message noting success, as shown in Figure 3-3.

Figure 3-3: Successful output from the ./configure command

5. Enter the make command to build the source into a binary.

6. Initiate the final installation with make install.

Installing on Mac OS X Systems

There are a few caveats for installing Wireshark on Mac OS X Snow Leopard, 
but installation is not a difficult task and I’ve outlined the installation steps 
here. The steps are:

1. Download the DMG package from the Wireshark web page.

2. Copy Wireshark.app to the Applications folder.

3. Open the Utilities folder in Wireshark.app.



In t roduct ion to Wireshark   41

4. In Finder, click Go, and select Go To Folder. Enter /usr/local/bin/ to 
open that directory.

5. Copy the contents of the Command Line folder into /usr/local/bin/. You 
must enter your password in order to do this.

6. In the Utilties folder, copy the ChmodBPF folder into the StartupItems 
folder. You will need to enter your password again to perform this action 
and complete the installation.

Wireshark Fundamentals

Once you’ve successfully installed Wireshark on your system, you can begin 
to familiarize yourself with it. Now you finally get to open your fully function-
ing packet sniffer and see . . . absolutely nothing!

Okay, so Wireshark isn’t very interesting when you first open it. In order 
for things to really get exciting, you need to get some data.

Your First Packet Capture

To get packet data into Wireshark, you’ll perform your first packet capture. 
You may be thinking, “How am I going to capture packets when nothing is 
wrong on the network?”

First, there is always something wrong on the network. If you don’t 
believe me, then go ahead and send an email to all of your network users 
and let them know that everything is working perfectly.

Secondly, there doesn’t need to be something wrong in order for you to 
perform packet analysis. In fact, most packet analysts spend more time ana-
lyzing problem-free traffic than traffic that they are troubleshooting. You need 
a baseline to compare to in order to be able to effectively troubleshoot net-
work traffic. For example, if you ever hope to solve a problem with DHCP by 
analyzing its traffic, you must understand what the flow of working DHCP 
traffic looks like.

More broadly, in order to find anomalies in daily network activity, you 
must know what normal daily network activity looks like. When your network 
is running smoothly, you can set your baseline so that you’ll know what its 
traffic looks like in a normal state.

So, let’s capture some packets!

1. Open Wireshark.

2. From the main drop-down menu, select Capture and then Interfaces. 
You should see a dialog listing the various interfaces that can be used to 
capture packets, along with their IP addresses.

3. Choose the interface you wish to use, as shown in Figure 3-4, and click 
Start, or simply click the interface under the Interface List section of the 
welcome page. Data should begin filling the window.



42   Chapter 3

Figure 3-4: Selecting an interface on which to perform your packet capture

4. Wait about a minute or so, and when you are ready to stop the capture 
and view your data, click the Stop button from the Capture drop-down 
menu.

Once you have completed these steps and finished the capture process, 
the Wireshark main window should be alive with data. As a matter of fact, you 
might be overwhelmed by the amount of data that appears, but it will all start 
to make sense very quickly as we break down the main window of Wireshark 
one piece at a time.

Wireshark’s Main Window

You’ll spend most of your time in the Wireshark main window. This is where 
all of the packets you capture are displayed and broken down into a more 
understandable format. Using the packet capture you just made, let’s take 
a look at Wireshark’s main window, as shown in Figure 3-5.

Figure 3-5: The Wireshark main window uses a three-pane design.

Packet List

Packet Details

Packet Bytes



In t roduct ion to Wireshark   43

The three panes in the main window depend on one another. In order 
to view the details of an individual packet in the Packet Details pane, you 
must first select that packet by clicking it in the Packet List pane. Once you’ve 
selected your packet, you can see the bytes that correspond with a certain 
portion of the packet in the Packet Bytes pane when you click that portion 
of the packet in the Packet Details pane.

NOTE Notice that Figure 3-5 lists a few different protocols in the Packet List pane. There is 

no visual separation of protocols on different layers; all packets are shown as they are 

received on the wire.

Here’s what each pane contains:

Packet List The top pane displays a table containing all packets in the 
current capture file. It has columns containing the packet number, the 
relative time the packet was captured, the source and destination of the 
packet, the packet’s protocol, and some general information found in 
the packet.

NOTE When I refer to traffic, I am referring to all packets displayed in the Packet List pane. 

When I refer to DNS traffic specifically, I mean the DNS protocol packets in the Packet 

List pane.

Packet Details The middle pane contains a hierarchical display of 
information about a single packet. This display can be collapsed and 
expanded to show all of the information collected about an individual 
packet.

Packet Bytes The lower pane—perhaps the most confusing—displays 
a packet in its raw, unprocessed form; that is, it shows what the packet 
looks like as it travels across the wire. This is raw information with noth-
ing warm or fuzzy to make it easier to follow.

Wireshark Preferences

Wireshark has several preferences that can be customized to meet your 
needs. To access Wireshark’s preferences, select Edit from the main drop-
down menu and click Preferences. You’ll see the Preferences dialog, which 
contains several customizable options, as shown in Figure 3-6.



44   Chapter 3

Figure 3-6: You can customize Wireshark using the Preferences dialog options.

Wireshark’s preferences are divided into six major sections:

User Interface These preferences determine how Wireshark presents 
data. You can change most options here according to your personal pref-
erences, including whether or not to save window positions, the layout 
of the three main panes, the placement of the scroll bar, the placement of 
the Packet List pane columns, the fonts used to display the captured 
data, and the background and foreground colors.

Capture These preferences allow you to specify options related to the 
way packets are captured, including your default capture interface, 
whether to use promiscuous mode by default, and whether to update 
the Packet List pane in real time.

Printing The preferences in this section allow you to specify various 
options related to the way Wireshark prints your data.

Name Resolution Through these preferences, you can activate features 
of Wireshark that allow it to resolve addresses into more recognizable 
names (including MAC, network, and transport name resolution) and 
specify the maximum number of concurrent name resolution requests.

Statistics This section provides a few configurable options for Wireshark’s 
statistical features.

Protocols The preferences in this section allow you to manipulate options 
related to the capture and display of the various packets Wireshark is 
capable of decoding. Not every protocol has configurable preferences, 
but some have several options that can be changed. These options are 
best left at their defaults unless you have a specific reason to change them.



In t roduct ion to Wireshark   45

Packet Color Coding

If you are anything like me, you may enjoy shiny objects and pretty colors. If 
that is the case, you probably got excited when you saw all those different 
colors in the Packet List pane, as in the example in Figure 3-7 (well, the fig-
ure is in black and white, but you get the idea). It may seem as if these colors 
are randomly assigned to each individual packet, but this is not the case.

Figure 3-7: Wireshark’s color coding allows for quick protocol identification.

Each packet is displayed as a certain color for a reason. These colors 
reflect the packet’s protocol. For example, all DNS traffic is blue, and all 
HTTP traffic is green. The color coding allows you to quickly differentiate 
between various protocols so that you don’t need to read the protocol field 
in the Packet List pane for each individual packet. You will find that this 
greatly speeds up the time it takes to browse through large capture files.

Wireshark makes it easy to see which colors are assigned to each protocol 
through the Coloring Rules window, shown in Figure 3-8. To open this win-
dow, select View from the main drop-down menu and click Coloring Rules.

Figure 3-8: The Coloring Rules window allows you to view and modify the coloring 
of packets.



46   Chapter 3

You can define your own coloring rules and modify existing ones. For 
example, to change the color used as the background for HTTP traffic from 
the default green to lavender, follow these steps:

1. Open Wireshark and access the Coloring Rules window (View�Coloring 

Rules).

2. Find the HTTP coloring rule in the coloring rules list and select it by 
clicking it once.

3. Click the Edit button. You’ll see the Edit Color Filter dialog, as shown in 
Figure 3-9.

Figure 3-9: When editing a color filter, you can modify both the 
foreground and background colors.

4. Click the Background Color button.

5. Select the color you wish to use on the color wheel, and then click OK.

6. Click OK twice more to accept the changes and return to the main win-
dow. The main window should then reload itself to reflect the updated 
color scheme.

As you work with Wireshark on your network, you will begin to notice 
that you deal with certain protocols more than others. Here’s where color-
coded packets can make your life a lot easier. For example, if you think that 
there is a rogue DHCP server on your network handing out IP leases, you 
could simply modify the coloring rule for the DHCP protocol so that it shows 
up in bright yellow (or some other easily identifiable color). This would allow 
you to pick out all DHCP traffic much more quickly, and make your packet 
analysis more efficient.

These coloring rules can also be further extended by creating them 
based on your own custom filters.

Now that you have Wireshark up and running, you’re ready to do some 
packet analysis. The next chapter describes how you can work with the pack-
ets you’ve captured.



W O R K I N G  W I T H  

C A P T U R E D  P A C K E T S

Now that you’ve been introduced to Wire-
shark, you’re ready to start capturing and 

analyzing packets. In this chapter, you’ll 
learn how to work with capture files, packets, 

and time-display formats. We’ll also cover more advanced 
options for capturing packets and dive into the world 
of filters.

Working with Capture Files

As you perform packet analysis, you will find that a good portion of the anal-
ysis you do will happen after your capture. Usually, you will perform several 
captures at various times, save them, and analyze them all at once. Therefore, 
Wireshark allows you to save your capture files to be analyzed later. You can 
also merge multiple capture files.



48   Chapter 4

Saving and Exporting Capture Files

To save a packet capture, select File�Save As. You should see the Save File 
As dialog, as shown in Figure 4-1. You’re asked for a location to save your 
packet capture and for the file format you wish to use. If you do not specify a 
file format, Wireshark will use the default .pcap file format. 

Figure 4-1: The Save File As dialog allows you to save your packet captures.

One of the more powerful features of the Save File As dialog is the ability 
to save a specific packet range. This is a great way to thin bloated packet cap-
ture files. You can choose to save only packets in a specific number range, 
marked packets, or packets visible as the result of a display filter (marked 
packets and filters are discussed later in this chapter).

You can export your Wireshark capture data into several different formats 
for viewing in other media or for importing into other packet-analysis tools. 
Formats include plaintext, PostScript, comma-separated values (CSV), and 
XML. To export your packet capture, choose File�Export, and then select 
the format for the exported file. You will see a Save As dialog containing 
options related to that specific format.



Working wi th Captured Packets   49

Merging Capture Files

Certain types of analysis require the ability to merge multiple capture files. 
This is a common practice when comparing two data streams or combining 
streams of the same traffic that were captured separately.

To merge capture files, open one of the capture files you want to merge 
and choose File�Merge to bring up the Merge with Capture File dialog, 
shown in Figure 4-2. Select the new file you wish to merge into the already 
open file, and then select the method to use for merging the files. You can 
prepend the selected file to the currently open one, append it, or merge the 
files chronologically based on their timestamps.

Figure 4-2: The Merge with Capture File dialog allows you to merge 
two capture files.

Working with Packets

You will eventually encounter situations involving a very large number of 
packets. As the number of these packets grows into the thousands and even 
millions, you will need to be able to navigate through packets more efficiently. 
For this purpose, Wireshark allows you to find and mark packets that match 
certain criteria. You can also print packets for easy reference.



50   Chapter 4

Finding Packets

To find packets that match particular criteria, open the Find Packet dialog, 
shown in Figure 4-3, by pressing CTRL-F. 

Figure 4-3: Finding packets in Wireshark based on 
specified criteria

This dialog offers three options for finding packets: 

� The Display filter option allows you to enter an expression-based filter 
that will find only those packets that satisfy that expression.

� The Hex value option searches for packets with a hexadecimal (with 
bytes separated by colons) value you specify. 

� The String option searches for packets with a text string you specify. 

Table 4-1 shows examples of these search types.

Other options include the ability to select the window in which you want 
to search, the character set to use, and the search direction. You can extend 
the capability of your string searches by specifying the pane the search is per-
formed in, setting the character set used, and making the search case sensitive.

Once you’ve made your selections, enter your search criteria in the text 
box, and click Find to find the first packet that meets your criteria. To find 
the next matching packet, press CTRL-N; find the previous matching packet 
by pressing CTRL-B.

Table 4-1: Search Types for Finding Packets

Search Type Examples

Display filter not ip 

ip addr==192.168.0.1 

arp

Hex value 00:ff

ff:ff

00:AB:B1:f0

String Workstation1

UserB

domain



Working wi th Captured Packets   51

Marking Packets

After you have found the packets that match your criteria, you can mark 
those of particular interest. For example, you may want to mark packets to be 
able to save those packets separately or to find them quickly based on the col-
oration. Marked packets stand out with a black background and white text, as 
shown in Figure 4-4. (You can also sort out only marked packets when saving 
packet captures.)

To mark a packet, right-click it in the Packet List pane and choose Mark 

Packet from the pop-up or click a packet in the Packet List pane and press 
CTRL-M. To unmark a packet, toggle this setting off using CTRL-M again. You 
can mark as many packets as you wish in a capture. To jump forward and 
backward between marked packets, press SHIFT-CTRL-N and SHIFT-CTRL-B, 
respectively.

Figure 4-4: A marked packet is highlighted on your screen. In this example, packet 1 is marked and appears 
darker.

Printing Packets

Although most analysis will take place on the computer screen, you may need 
to print captured data. I often print out packets and tape them to my desk so 
that I can quickly reference their contents while doing other analysis. Being 
able to print packets to a PDF file is also very convenient, especially when 
preparing reports.

To print captured packets, open the Print dialog by choosing File�Print 
from the main menu. You will see the Print dialog, as shown in Figure 4-5.

Figure 4-5: The Print dialog allows you to print the packets you specify.



52   Chapter 4

You can print the selected data as plaintext or PostScript, or to an output 
file. As with the Save File As dialog, you can print a specific packet range, 
marked packets only, or packets displayed as the result of a filter. You can 
also select which of Wireshark’s three main panes to print for each packet. 
Once you have selected the options, click Print.

Setting Time Display Formats and References

Time is of the essence—especially in packet analysis. Everything that happens 
on a network is time sensitive, and you will need to examine trends and network 
latency in nearly every capture file. Wireshark recognizes the importance of 
time and supplies several configurable options relating to it. In this section, 
we’ll look at time display formats and references.

Time Display Formats

Each packet that Wireshark captures is given a timestamp, which is applied 
to the packet by the operating system. Wireshark can show the absolute 
timestamp indicating the exact moment when the packet was captured, as 
well as the time in relation to the last captured packet and the beginning and 
end of the capture.

The options related to the time display are found under the View heading 
on the main menu. The Time Display Format section, shown in Figure 4-6, 
lets you configure the presentation format as well as the precision of the time 
display. The presentation format option lets you choose various options for 
time display. The precision options allow you to set the time display precision 
to automatic or to a manual setting, such as seconds, milliseconds, micro-
seconds, and so on. We will be changing these options later in the book, so 
you should familiarize yourself with them now.

Packet Time Referencing

Packet time referencing allows you to configure a certain packet so that all 
subsequent time calculations are done in relation to that specific packet. This 
feature is particularly handy when you are examining a series of sequential 
events that are triggered somewhere other than the start of the capture file.

To set a time reference to a certain packet, select the reference packet in 
the Packet List pane, and then choose Edit�Set Time Reference from the 
main menu. To remove a time reference from a certain packet, select the 
packet and toggle off the Edit�Set Time Reference setting.

When you enable a time reference on a particular packet, the Time col-
umn in the Packet List pane will display *REF*, as shown in Figure 4-7. 

Setting a packet time reference is useful only when the time display for-
mat of a capture is set to display the time in relation to the beginning of the 
capture. Any other setting will produce no usable results and will create a set 
of times that can be very confusing.



Working wi th Captured Packets   53

Figure 4-6: Several time display formats are available.

Figure 4-7: A packet with the packet time reference toggle enabled

Setting Capture Options

We walked through a very basic packet capture in Chapter 3. Wireshark offers 
quite a few more capture options in the Capture Options dialog, shown in 
Figure 4-8. To open this dialog, choose Capture�Interfaces and click the 
Options button next to the interface on which you want to capture packets.

The Capture Options dialog has more bells and whistles than you can 
shake a stick at, all designed to give you more flexibility while capturing packets. 
It’s divided into Capture, Capture Files, Stop Capture, Display Options, and 
Name Resolution sections, which we’ll examine separately.

Capture Settings

The Interface drop-down list in the Capture section is where you can select 
the network interface to configure. The left drop-down list allows you to 
specify whether the interface is local or remote, and the right drop-down list 
shows all available capture interfaces. The IP address of the interface you 
have selected is displayed directly below this drop-down list.



54   Chapter 4

Figure 4-8: The Capture Options dialog

The three checkboxes on the left side of the dialog box allow you to 
enable or disable promiscuous mode (always enabled by default), capture 
packets in the currently experimental pcap-ng format, and limit the size of 
each capture packet by bytes.

The buttons on the right side of the Capture section let you access wire-
less and remote settings (as applicable). Beneath those is the buffer size 
option, which is available only on systems running Microsoft Windows. You 
can specify the amount of capture packet data that is stored in the kernel 
buffer before it is written to disk. (This is a value you won’t normally modify 
unless you begin noticing that you are dropping a lot of packets.) The Cap-
ture Filter option lets you specify a capture filter.

Capture File(s) Settings

The Capture File(s) section allows you to automatically store capture packets 
in a file, rather than capturing them first and then saving the file. Doing so 
offers you a great deal more flexibility in managing how packets are saved. 
You can choose to save them as a single file or a file set, or even use a ring 
buffer to manage the number of files created. To enable this option, enter a 
complete file path and name in the File text box. 

When capturing a large amount of traffic or performing long-term cap-
tures, file sets can prove particularly useful. A file set is a grouping of multiple 



Working wi th Captured Packets   55

files separated by a particular condition. To save to a file set, check the Use 
Multiple Files option here.

Wireshark uses various triggers to manage saving to file sets based upon a 
file size or time condition. To enable these options, place a check mark next 
to the Next File Every option (the top one for file-size triggers and the one 
beneath that for time-based triggers), and then specify the value and unit on 
which to trigger. For instance, you can create a trigger that creates a new file 
after every 1MB of traffic captured, or after every minute of traffic captured, 
as shown in Figure 4-9. 

Figure 4-9: A file set created by Wireshark at 
one-minute intervals

These options can also be used in combination. For example, if you specify 
both triggers, a new file will be created when 1MB of data is captured or when 
a minute has elapsed—whichever comes first.

The Ring Buffer With option lets you use a ring buffer when creating a 
file set. This is used by Wireshark as a first in, first out (FIFO) method of 
writing multiple files. Although the term ring buffer has multiple meanings 
throughout information technology, for our purposes here, it is essentially 
a file set that specifies that upon completion of writing the last file, the first 
file is overwritten when more data must be saved to disk. You can check this 
option and specify the maximum number of files you wish to cycle through. 
For example, say you choose to use multiple files for your capture with a new 
file created every hour, and you set your ring buffer to 6. Once the sixth file 
has been created, the ring buffer will cycle back around and overwrite the 
first file rather than create a seventh file. This ensures that no more than six 
files (or in this case, hours) of data will remain on your hard drive, while still 
allowing new data to be written. 

The Stop Capture After option allows you to stop the current capture 
once a certain number of files have been created.

Stop Capture Settings

The Stop Capture section lets you stop the running capture after certain trig-
gers are met. As with multiple file sets, you can trigger based on file size and 
time interval, as well as number of packets. These options can be used with 
the multiple file options previously discussed.



56   Chapter 4

Display Options

The Display Options section controls how packets are shown as they are being 
captured. The Update List of Packets in Real Time option is self-explanatory 
and can be paired with the Automatic Scrolling in Live Capture option. When 
both of these options are enabled, all captured packets are displayed on the 
screen, with the most recently captured ones shown instantly. 

WARNING When paired, the Update List of Packets in Real Time and Automatic Scrolling in Live 

Capture options can be quite processor intensive, even when capturing a reasonable 

amount of data. Unless you have a specific need to see the packets in real time, it’s best 

to deselect both options.

The Hide Capture Info Dialog option lets you suppress the display of a 
small window that shows the number and percentage of packets that have 
been captured, by protocol.

Name Resolution Settings

The Name Resolution section options allow you to enable automatic MAC 
(layer 2), network (layer 3), and transport (layer 4) name resolution for your 
capture. We’ll discuss name resolution in Wireshark more in depth, includ-
ing its drawbacks, in Chapter 5.

Using Filters

Filters allow you to specify exactly which packets you have available for analy-
sis. Simply stated, a filter is an expression that defines criteria for the inclusion 
or exclusion of packets. If there are packets you don’t want to see, you can 
write a filter that gets rid of them. If there are packets you want to see exclu-
sively, you can write a filter that shows only those packets.

Wireshark offers two main types of filters:

� Capture filters are specified when packets are being captured and will 
capture only those packets that are specified for inclusion/exclusion in 
the given expression.

� Display filters are applied to an existing set of captured packets in order 
to hide unwanted packets or show desired packets based on the specified 
expression.

Let’s look at capture filters first.

Capture Filters

Capture filters are used during the actual packet-capturing process. One pri-
mary reason for using a capture filter is performance. If you know that you 
do not need to analyze a particular form of traffic, you can simply filter it out 
with a capture filter and save the processing power that would typically be 
used in capturing those packets.



Working wi th Captured Packets   57

The ability to create custom capture filters comes in handy when dealing 
with large amounts of data. The analysis process can be sped up by ensuring 
that you are looking at only the packet relevant to the issue at hand.

A simple example of when you might use a capture filter is when captur-
ing traffic on a server with multiple roles. Suppose you are troubleshooting 
an issue with a service running on port 262. If the server you are analyzing 
runs several different services on a variety of ports, finding and analyzing 
only the traffic on port 262 can be quite a job in itself. To capture only the 
port 262 traffic, you can use a capture filter. To do so, you can use the Capture 
Options dialog, discussed earlier in this chapter, as follows:

1. Choose Capture�Interfaces and click the Options button next to the 
interface on which you want to capture packets to open the Capture 
Options dialog. 

2. Select the interface you wish to capture packets on, and choose a capture 
filter. 

3. You can apply the capture filter by entering an expression next to the 
Capture Filter button. We want our filter to show only traffic inbound 
and outbound to port 262, so we enter port 262, as shown in Figure 4-10. 
(We’ll discuss expressions in more detail in the next section.)

4. Once you have set your filter, click Start to begin the capture. 

Figure 4-10: Creating a capture filter in the Capture Options dialog

After collecting an adequate sample, you should now see only the port 262 
traffic and be able to more efficiently analyze this particular data.



58   Chapter 4

Capture/BPF Syntax

Capture filters are applied by WinPcap and use the Berkeley Packet Filter 
(BPF) syntax. This syntax is common in several packet-sniffing applications, 
mostly because most packet-sniffing applications rely on the libpcap/WinPcap 
libraries, which allow for the use of BPFs. A knowledge of BPF syntax is crucial 
as you dig deeper into networks at the packet level.

A filter created using the BPF syntax is called an expression, and each 
expression consists of one or more primitives. Primitives consist of one or 
more qualifiers (as listed in Table 4-2) followed by an ID name or number, as 
shown in Figure 4-11. 

Figure 4-11: A sample capture filter

Given the components of an expression, a qualifier of src and an ID 
of 192.168.0.10 would combine to form a primitive. This primitive alone is 
an expression that would capture traffic only with a source IP address of 
192.168.0.10. 

You can use logical operators to combine primitives to create more 
advanced expressions. Three logical operators are available:

� Concatenation operator AND (&&)

� Alternation operator OR (||)

� Negation operator NOT (!) 

For example, the following expression will capture only traffic with a 
source IP address of 192.168.0.10 and a source or destination port of 80: 

src 192.168.0.10 && port 80

Table 4-2: The BPF Qualifiers

Qualifier Description Examples

Type Identifies what the ID name or number 

refers to

host, net, port

Dir Specifies a transfer direction to or from 

the ID name or number

src, dst

Proto Restricts the match to a particular 

protocol

ether, ip, tcp, udp, http, ftp

Q
ua

lif
ie
r

Q
ua

lif
ie
r ID

Q
ua

lif
ie
r

Q
ua

lif
ie
r ID

Primitive Operator Primitive

hostdst 192.168.0.10 && tcp port 80



Working wi th Captured Packets   59

Hostname and Addressing Filters

Most filters you create will center on a particular network device or grouping 
of devices. Depending on the circumstances, filtering can be based on a 
device’s MAC address, IPv4 address, IPv6 address, or its DNS hostname.

For example, say you’re curious about the traffic of a particular host that 
is interacting with a server on your network. From the server, you can create 
a filter using the host qualifier that captures all traffic associated with that 
host’s IPv4 address: 

host 172.16.16.149

If you are on an IPv6 network, you would filter based on an IPv6 address 
using the host qualifier as shown here:

host 2001:db8:85a3::8a2e:370:7334

You can also filter based on a device’s hostname with the host qualifier, 
like so:

host testserver2

Or, if you’re concerned that the IP address for a host might change, you can 
filter based on its MAC address as well by adding the ether protocol qualifier:

ether host 00-1a-a0-52-e2-a0

The transfer direction qualifiers are often used in conjunction with filters 
like the ones in the previous examples to capture traffic based on whether 
it’s going to or coming from a host. For example, to capture only traffic 
coming from a particular host, add the src qualifier

src host 172.16.16.149

To capture only data leaving server 172.16.16.149 that is destined for a 
questionable host, use the dst qualifier:

dst host 172.16.16.149

When you don’t use a type qualifier (host, net, or port) with a primitive, 
the host qualifier is assumed. Therefore, the equivalent of the preceding 
example could exclude that qualifier:

dst 172.16.16.149



60   Chapter 4

Port and Protocol Filters

In addition to filtering on hosts, you can filter based on the ports used in each 
packet. Port filtering can be used to filter based on services and applications 
that use known service ports. For example, here’s a simple filter to capture 
traffic only on port 8080:

port 8080

To capture all traffic except that on port 8080, this will work:

!port 8080

The port filters can be combined with transfer direction qualifiers. For 
example, to capture only traffic going to the web server listening on the stan-
dard HTTP port 80, use the dst qualifier:

dst port 80

Protocol Filters

Protocol filters let you filter packets based on certain protocols. They are 
used to match non-application-layer protocols that can’t simply be defined 
by the use of a certain port. Thus, if you want to see only ICMP traffic, you 
could use this filter:

icmp

To see everything but IPv6 traffic, this will do the trick:

!ip6

Protocol Field Filters

One of the real powers of the BPF syntax is the ability that it gives us to examine 
every byte of a protocol header in order to create very specific filters based 
on that data. The advanced filters that we’ll discuss in this section will allow 
you to retrieve a specific number of bytes from a packet beginning at a partic-
ular location. 

For example, suppose that we want to filter based on the type field of 
an ICMP header. The type field is located at the very beginning of a packet, 
which puts it at offset 0. To identify the location to examine within a packet, 
specify the byte offset in square brackets next to the protocol qualifier—
icmp[0] in this example. This specification will return a 1-byte integer value 
that we can compare against. For instance, to get only ICMP packets that 



Working wi th Captured Packets   61

represent destination unreachable (type 3) messages, we use the equal to oper-
ator in our filter expression, as follows:

icmp[0] == 3

To examine only ICMP packets that represent an echo request (type 8) 
or echo reply (type 0), use two primitives with the OR operator:

icmp[0] == 8 || icmp[0] == 0

These filters work great, but they filter based on only 1 byte of informa-
tion within a packet header. Luckily, you can also specify the length of the 
data to be returned in your filter expression by appending the byte length 
after the offset number within the square brackets, separated by a colon. 

For example, say we want to create a filter that captures all ICMP 
destination-unreachable, host-unreachable packets, identified by type 3, 
code 1. These are 1-byte fields, located next to each other at offset 0 of the 
packet header. To do this, we create a filter that checks 2 bytes of data 
beginning at offset 0 of the packet header, and compare that against the 
hex value 0301 (type 3, code 1), like this:

icmp[0:2] == 0x0301

A common scenario is to capture only TCP packets with the RST flag set. 
We will cover TCP extensively in Chapter 6. For now, you just need to know 
that the flags of a TCP packet are located at offset 13. This is an interesting 
field because it is collectively 1 byte in size as the flags field, but each particu-
lar flag is identified by a single bit within this byte. Multiple flags can be set 
simultaneously in a TCP packet, so we can’t efficiently filter by a single tcp[13] 
value because several may represent the RST bit being set. Therefore, we 
must specify the location within the byte that we wish to examine by append-
ing that location to the current primitive with a single ampersand (&). The 
RST flag is at the bit representing the number 4 within this byte, and the fact 
that this bit is set to 4 tells us that the flag is set. The filter looks like this:

tcp[13] & 4 == 4

To see all packets with the PSH flag set, which is identified by the bit 
location representing the number 8, our filter would use that location instead:

tcp[13] & 8 == 8

Sample Capture Filter Expressions

You will often find that the success or failure of your analysis depends on 
your ability to create filters appropriate for your current situation. Table 4-3 
shows a few of the capture filters that I use most frequently.



62   Chapter 4

Display Filters

A display filter is one that, when applied to a capture file, tells Wireshark to 
display only packets that match that filter. You can enter a display filter in 
the Filter text box above the Packet List pane. 

Display filters are used more often than capture filters because they allow 
you to filter packet data without actually omitting the rest of the data in the 
capture file. That way, if you need to revert back to the original capture, you 
can simply clear the filter expression.

You might use a display filter to clear irrelevant broadcast traffic from a 
capture file; for instance, to clear ARP broadcasts from the Packet List pane 
when these packets don’t relate to the current problem being analyzed. How-
ever, because those ARP broadcast packets may be useful later, it’s better to 
filter them temporarily than it is to delete them. 

To filter out all ARP packets in the capture window, simply place your 
cursor in the Filter text box at the top of the Packet List pane and enter !arp 
to remove all ARP packets from the Packet List pane, as shown in Figure 4-12. 
To remove the filter, click the Clear button.

Figure 4-12: Creating a display filter using the Filter text box above the Packet 
List pane

Table 4-3: Commonly Used Capture Filters

Filter Description

tcp[13] & 32 == 32 TCP packets with the URG flag set

tcp[13] & 16 == 16 TCP packets with the ACK flag set

tcp[13] & 8 == 8 TCP packets with the PSH flag set

tcp[13] & 4 == 4 TCP packets with the RST flag set

tcp[13] & 2 == 2 TCP packets with the SYN flag set

tcp[13] & 1 == 1 TCP packets with the FIN flag set

tcp[13] == 18 TCP SYN-ACK packets

ether host 00:00:00:00:00:00 �
(replace with your MAC)

Traffic to or from your MAC address

!ether host 00:00:00:00:00:00 �
(replace with your MAC)

Traffic not to or from your MAC address

broadcast Broadcast traffic only

icmp ICMP traffic

icmp[0:2] == 0x0301 ICMP destination unreachable, host unreachable

ip IPv4 traffic only

ip6 IPv6 traffic only

udp UDP traffic only



Working wi th Captured Packets   63

The Filter Expression Dialog (the Easy Way)

The Filter Expression dialog, shown in Figure 4-13, makes it easy for novice 
Wireshark users to create capture and display filters. To access this dialog, 
click the Capture Filter button in the Capture Options dialog, and then click 
the Expression button. 

The left side of the dialog lists all possible protocol fields. These fields 
specify all possible filter criteria. To create a filter, follow these steps:

1. To view the specific criteria fields associated with a protocol, expand that 
protocol by clicking the plus (+) symbol next to it. Once you find the 
criterion you want to base your filter on, click to select it. 

2. Choose the way that your selected field will relate to the criterion value 
you supply. This relation is specified as equal to, greater than, less than, 
and so on. 

3. Create your filter expression by specifying a criterion value that will 
relate to your selected field. You can define this value or select it from 
predefined ones programmed into Wireshark. 

4. When you’ve finished, click OK to view the completed text-only version 
of your filter. 

The Filter Expression dialog is great for novice users, but once you get 
the hang of things, you will find that manually entering filter expressions 
greatly increases their efficiency. The display filter expression syntax struc-
ture is simple, yet extremely powerful.

Figure 4-13: The Filter Expression dialog allows for easy creation of filters in 
Wireshark.



64   Chapter 4

The Filter Expression Syntax Structure (the Hard Way)

You will most often use a capture or display filter to filter based on a specific 
protocol. For example, say you are troubleshooting a TCP problem and you 
want to see only TCP traffic in a capture file. If so, a simple tcp filter will do 
the job. 

Now let’s look at things from the other side of the fence. Imagine that in 
the course of troubleshooting your TCP problem, you have used the ping 
utility quite a bit, thereby generating a lot of ICMP traffic. You could remove 
this ICMP traffic from your capture file with the filter expression !icmp. 

Comparison operators allow you to compare values. For example, when 
troubleshooting TCP/IP networks, you will often need to view all packets 
that reference a particular IP address. The equal-to comparison operator 
(==) will allow you to create a filter showing all packets with an IP address of 
192.168.0.1:

ip.addr==192.168.0.1

Now suppose that you need to view only packets that are less than 128 bytes 
in length. You can use the “less than or equal to” operator (<=) to accomplish 
this goal in a filter expression like this:

frame.len <= 128

Table 4-4 shows Wireshark’s comparison operators.

Logical operators allow you to combine multiple filter expressions into 
one statement, dramatically increasing the effectiveness of our filters. For 
example, say that we’re interested in displaying only packets to two IP addresses. 
We can use the or operator to create one expression that will display packets 
containing either IP address, like this:

ip.addr==192.168.0.1 or ip.addr==192.168.0.2

Table 4-5 lists Wireshark’s logical operators.

Table 4-4: Wireshark Filter Expression Comparison Operators

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to



Working wi th Captured Packets   65

Sample Display Filter Expressions

Although the concepts related to creating filter expressions are fairly simple, 
you will need to use several specific keywords and operators when creating 
new filters for various problems. Table 4-6 shows some of the display filters 
that I use most often. For a complete list, see the Wireshark display filter ref-
erence at http://www.wireshark.org/docs/dfref/. 

Saving Filters

Once you begin creating a lot of capture and display filters, you will find that 
you use certain ones frequently. Fortunately, you don’t need to type these in 
each time you want to use them, because Wireshark lets you save your filters 
for later use. To save a custom capture filter, follow these steps:

1. Select Capture�Capture Filters to open the Capture Filter dialog.

2. Create a new filter by clicking the New button on the left side of the dialog. 

3. Enter a name for your filter in the Filter Name box.

4. Enter the actual filter expression in the Filter String box. 

5. Click the Save button to save your filter expression in the list. 

To save a custom display filter, follow these steps:

1. Select Analyze�Display Filters, or click the Filter button above the 
Packet List pane to open the Display Filter dialog, shown in Figure 4-14.

Table 4-5: Wireshark Filter Expression Logical Operators

Operator Description

and Both conditions must be true.

or Either one of the conditions must be true.

xor One and only one condition must be true.

not Neither one of the conditions is true.

Table 4-6: Commonly Used Display Filters

Filter Description

!tcp.port==3389 Clear RDP traffic

tcp.flags.syn==1 TCP packets with the SYN flag set

tcp.flags.rst==1 TCP packets with the RST flag set

!arp Clear ARP traffic

http All HTTP traffic

tcp.port==23 || tcp.port 21 Cleartext admin traffic (Telnet or FTP)

smtp || pop || imap Cleartext email traffic (SMTP, POP, or IMAP)



66   Chapter 4

Figure 4-14: The Display Filter dialog allows you to save 
filter expressions.

2. Create a new filter by clicking the New button on the left side of the dialog. 

3. Enter a name for your filter in the Filter Name box.

4. Enter the actual filter expression in the Filter String box. 

5. Click the Save button to save your filter expression in the list. 

Wireshark includes several built-in filters that are great examples of what 
a filter should look like. You will want to use them (together with the Wireshark 
help pages) when creating your own filters. We will use filters in examples 
throughout this book.


